Gregory G. Finn

AD-A196 792

- . o a2 _

Approved for public relecso;
Distribution Unlimited

INFORMATION
SCIENCES
INSTITUTE

-~ ISI'Researcn Report
ISI/RK-88-201
June 1988

University
of Southern
California

Reducing the Vulnerability
of Dynamic Computer Networks

DTIC

mITLECTE
JUL 2 21088 &

H

! / 213/822-1511
4676 Admiralty Way/Marina del Rey/California 90292-6695

- v Sy - Qe e N S N G L. B, e .

Unclassified

ECURI LASSIFICATI |

REPORT DOCUMENTATION PAGE

12, REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

B e Ty
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT

el

2b. DEL.ASSIFICATION / DOWNGRADING SCHEDULE

This document is approved for public release,
distribution is uniimited.

IS/RR-88-201

' 4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
UsSC/Information Sciences Institute

6b. OFFICE SYMBOL
(If applicable)

6c. ADDRESS (City, State, and 2IP Code) 7b. ADDRESS (City, State, and 2IP Code)
4676 Admiralty Way
Marinadel Rey,CA 90292 | TUTUTT™T
8a. NAME OF FUNDING / SPONSORING 8b. ?'FFICE Sth'AgOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (if applicable.
Research Projects Agency MDA903-87-C-0719
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

. PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Boulevard ELEMENT NO. | NO. NO. ACCESSION NO.
Arlington, VA 22209

11. TITLE (Include Security Classification)

Reducing the Vulnerability of Dynamic Computer Networks [Unclassified]

12. PERSONAL AUTHOR(S) Finn Gregory G
' .

13a. TYPE OF REPORT

13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) rs. glgcs COUNT

Research Report FROM TO 1988, June

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROYP SUB-GROUP computer networks, network architecture, network design,
09 02 network vulnerability, networks, protocols

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Networks are becoming impoitant in the day-to-day operations of business, the military, and
government. As the use of netvvorks grows, it is a wise precaution to assume that malicious attempts
to sabotage a network will eccur. Network operating software should not make the network
suscaptible to widespread failure if one router, or even several, deviate from acceptable behavior.
Network software should be resistant to this manner of attack while preserving the desirable
network attributes of flexibility and efficiency. This report points out that several commonly used
routing procedures imply a vulnerability to attack, and presents a routing procedure that allows the
development of operating software that is highly resistant to attack.

20. DISTRIBUTION / AVAILABILITY CF ABSTRACT

22a. NAME OF RESPONSIBLE INDIVIDUAL

EIUNCLASSIFIEDAUNLIMITED 7] SAME AS RPT.

DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

Sheila Coyazo
Yictor Brown

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

213-822-1511

DD FORM 1473, s8aMAR

——e

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

N T AT B A R LN WM WP B W MW R W Ml M Sl U Nl SR FRwr SR SNt R W PRt M nd S W MW B s S m: S B MR BPLC B AP SRl WELT AT SPN7 BT WUt S et e e

T o I WY S S PN IR O AT A C A PN TS b T W N W W W WL U W WY Lo L 2 ¥ 1. 4

ISI Research Report
ISI/RR-88-201
June 1988

University
of Southern
California

Gregory G. Finn

SR Reducing the Vulnerzbility

i | of Dynamic Computer Networks

INFORMATION
SCIENCES
INSTITUTE

213/822-1511
4676 Admiralty Way/Marina del Rey/California 90292-6695

This research is supported by the Defense Advanced Research Projects Agency under Conrtract No. MDA903 87 C 0719. Views
and conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or
policy of DARPA, the U.S. Government, or any person or agency connected with them.

Acknowledgments

I thank Jon Postel for his support of this work, Walter Prue who reviewed it and, finally,
Sheila Coyazo and Diane Hatch-Avis for correcting the author’s obscure or incorrect
prose.

1 Introduction

The issue of computer network privacy and security has traditionally focussed on
the end-to-end connection; the primary concern has been to prevent the unintended
exposure of data, while the internal security of the computer network itself has largely
been ignored. Typically, network communications strategies have implicitly assumed that
the network provides a reliable means of data transport. If that assumption is untrue,
then end-to-end connections may be denied service. If denial of service is a rare and
isolated event, this is usually not a significant problem. However, if denial of service is
either frequent or potentially widespread when it occurs, then the ability of the network to
transmit any time—critical information (secure or otherwise) must be called into question.

Methods of dynamic routing used by computer networks may incorporate elements
in their design that allow widespread denial of service. In 1980 an event occurred that
illustrates this problem: a malfunction in one of the ARPANET’s routers shut down the
entire network for several hours [Rosen-81-2]. Although this incident was accidental,
this type of failure could also be caused by a malicious attack.

Some long-haul networks today assume that the user population is trustworthy.
Positive assumptions concerning these users, their motives, their mutual cooperation, and
so on, are unrealistic in a widespread commercial environment. A network provides a
peculiar attraction to malicious individuals, many of whom are technically adept. Recent
news stories concerning the crimes of so-called network ‘crackers’ substantiate this. In
militar 7 or security applications, the network designer must expect an enemy to exploit
any design weakness.

Certain individuals, by virtue of their position, will have access rights to network
hardware, software, and specialized information concerning network operation. It is
highly possible that at some time someone with access will be malicious. It is unrealistic
to expect network hardware or software to be completely tamper-proof.

As long-haul computer networks become an accepted part of day-to-day
commercial or military operations, they become important and even vital to those
operations. A carefully constructed hardware and software system cannot protect itself
indefinitely against internal failure or human intervention. A distributed network must
not incorporate design elements that allow widespread network failure as the result of an
attack at any single place or a breakdown in a single network component. Network
softwere should be resistant to attack.

1.1 Preliminaries

The non-local computer network is composed of various computers connected to
one another by communications channels. Such a network can be abstractly modeled as
an undirected graph in which the computers that perform the routing are represented by

the nodes of the graph, and the communications channels are represented by the links
between riodes. Networkr facilitate communication by exchanging packets of information
over these links. Packets are sent from a source to a set of destinations. We differentiate
between computers that primarily perform the packet-routing functions of the network
(routers) and those upon which people perform tasks (hosts). Routers are the
intermediaries of the network that transport packets betweer. source and destination. This

report does not concern itself with computer networks that hLave bus, ring, or star
topologies.

A computer network provides data transport, which is accomplished through the
cooperation of routers and communications channels. A network can be damaged in
several ways: poor routes, dropped packets, severed connections, poor channels,
partitioning, router overloading, or congestion. However, to a user or application, the
damage will be manifest as a denial of service. This report is primarily concerned with
the function of routers, and how that function can expose the network to seriously
damaging attacks. Other aspects of network security, such as data integrity, are discussed
only insofar as they are used to make a network more resistant to attack. This report does
not specifically concern itself with the issues involved in the secure transmission of
end-to-end user traffic.

1.1.2 Practical Routing Requirements and Their Implications

Routing is a central issue in the design of any distiibut:d computer network.
Routing procedures are necessary if a dynamic network is to provide predictable service. 1

The routing procedures of early long-haul networks, such as the ARPANET, were
designed around the following three requirements:

(1) Reliable delivery in the presence of an intermediate communicaticn
channel or router failure. '

(2) Flexibility to allow quick and easy topological charges.
(3) Ability to provide users with efficient service.

It is important to read between the lines of these recuirements. Implicit is the
assumption that routing is dynamic and decentralized, that both communications channels
and routing hardware a.c somewhat unreliable, and that tlie number of routers changes
often. This is in contrast to the telephone exchange-to-zxchange network, where routing
is quasi-static and centrally determined between large sites that almost never fail, and
where the number of exchanges is relatively stable.

Routing has been approached as a graph theoretic question since work in this area began in the
middle 1950's. Key works are Dijkstra's shortest path between two network nodes, determined from
the network distance matrix [Dijkstra~59], and the distributed routing algorithm of Ford and
Fulkerson [Ford-62].

P e e e = =

The Requirement of Reliable Delivery

In a dynamic network, the route from one network site to another can change over
time. In a decentralized network, this implies that routers must obtain information about
network connectivity by exchanging routing update messages. This allows routers to
change their choice of routes so that paths between source and destination are maintained
when they might otherwise have been severed. The class of routing procedure chosen for
a network determines both the number of updates exchanged, and the extent of their
propagation throughout the network.

Nearly everyone agrees that a routing algorithm should make it possible to deliver
data from one rout:r to another whenever a path exists between the two. However, such
a strong requirement is not always achievable. For example, it is not always practical in
large networks to find a path between source and destination whenever it exists. The
requirement is often weakened by allowing the routing algorithm to make the probability
of delivery arbitrarily high in the general case but not to guarantee delivery in all cases.

Many computer uetworks have adopied a routing procedure called shortest-path
routing. This procedure is popular because it provides maximum reliability in the
presence of link and router failures; it can utilize all possible operating paths in a
network. If a path exists between two routers, it can find that path. In this sense,
shortest-path routing is the most reliable routing procedure. Shortest-path routing
requires updated routing metrics (such as ~ *ance or delay) to be periodically exchanged
between all operating routers.

As a network grows, the volume of this update traffic grows, as does the time
required to process, store, and generate it. This overhead can be ovzrcome by slightly
relaxing the requirement of reliable delivery and using a routing hierarchy. The resulting
hierarchic routing still requires all routers to exchange update information, but the
amount of information exchanged and stored is exponentially reduced. By using
geographic forms of address, it is possible to further limit the exchange of update
information.

The Requirement of Topological Flexibility

In a dynamic network, routers are periodically taken out of service, new routers are
added, old routers are removed, and testing configurations are attached. The flexibility to
make these topological changes is tae second major requirement of any practical routing
procedure. In a dynamic network, routers do not have fixed knowledge about all other
routers in the network. Even fixed knowledge about immediate neighbors restricts
flexibility, since it implies that neighboring routers must be halted and reloaded whenever
a new router is added or removed. It also makes ‘splicing out’ a router for servicing
impractical. Maximum topological flexibility implies that a router must be able to
determine dynamically who and where its neighbors are.

-3 -

The Requirement of Efficient Service

A network should provide adequate service to its users. Variations in user
requirements, network topology, and communication bandwidth affect that service. The
routes chosen should be adjusted dynamically, so that service to a user is rarely noticeably
degraded. For example, as a region becomes congested, the network should avoid routing
new traffic through that region if possible. This is usually achieved through the exchange
of control messages among routers.

1.2 Characterizing Attack Resistance

A network is defined to be attack resistant if the results of any attack at a single
point do not adversely affect network operation over a wide region for an extended
period. Two types of attack are differentiated: direct and indirect. Direct attacks, such as
a severed communication channel or a halted router, .esult in long-term damage to
network facilities. These are the familiar forms of attack for which network operating
software is normally designed.

Indirect attacks cause long-term damage by using characteristics of the network’s
own operating software to interfere with network operation. Examples are an invalid
routing update that partitions the network, or a runaway router thet saturates a region of
the network. Networ!- software is usually not designed with these forms of attack in mind.
Both direct and indirect attacks can be the result of hardware failure, axcident, or
deliberate intervention. Ideally, network software should satisfy practical routing
requirements and be attack resistant.

A network that has a single critical path, such as a local area network based upon a
bus transport medium, is not attack resistant. Severing the coaxial cable between tap
points at best partitions an IEEE 802.3 network and at worst halts communication, since
the bus is then improperly terminated. For a network to be attack resistant, redundant
communication paths are required. It must not be possible to partition the network either
by halting any single router or by severing any single link between routers. The network
must have a connectivity of at least two. To this is added the restriction that links use
vhysicully separated communications channels. A router whose links are separate
channels within a single Ti group does not meet this requirement, since the links share
the same physical transmission medium.

Consider a portion of a typical network, depicted in Figure 1. The types of direct
attack possible at a single point in and around a router such as x are to disable x or to
sever one of its links. Of these attacks the former is more severe and results in two types
of damage: (1) x can no longer be used as an intermediary, and (2) x is no longer
reachable. The first category causes short-term damage that can be corrected. By using
a dynamic adaptive routing procedure, the immediate neighbors of x can initiate remedial
action that causes the network to reroute around x. The second type of damage is
long-term and cannot be corrected by the network. However, the long-term damage of
the direct attack has been limited to the immediate vicinity of the attack.

Figure 1.

Limited
Long-term Damage

A network can protect itself ngainst direct attack by using redundancy in major
network components and by providing multiple paths to each destination from any other
router. Generally, networks take precautions against direct attack, but mechanisms to
protect a network against indirect attack are less obvious. Indirect attack may be the
result of hardware or software error, malicious assault on the network via insertion or
modification of network messages, or alteration of a nctwork router’s software. The
effects of an indirect attack vary, depending on network software. The mechanisms for
protecting a network from indirect attack (if possible) are likewise not so straightiorward
us they are with a direct attack. However, one can formulate a guideline:

An attacker should gain no relative advantage via an indirect versus
a direct attack.

This is useful as a design goal but it is unclear if it is achievable, since some
indirect attacks may not even be detectable. Therefore, one requirement for an attack
resistant network is that it be designed so that any single indirect attack is detectable if its
long-term result more adversely affects network operation than any single direct attack.
As an example, if a router generates a harmful and illegal routing update, its immediate
neighbors should prevent the illegal update from reaching the rest of the network and
possibly partitioning the network.

1.2.1 In Contrast to the Byzantine Generals Problem

An issue in distributed computing is the reliable transmission of information from
a transmitter to a set of receivers in the presence of faults or malicious behavior. This is
called the Byzantine Generals problem [Lamport-82][Dclev-82][Srikanth-87]. Assume
that a network router z broadcasts a message to the other routers of the network. An
algorithm that solves the Byzantine Generals problem satisfies the following two
propertizs:

(1) All reliable routers agree on the same message.

(2) If z is reliable, then all the reliable routers agree on its message.

»otremnraEaa———_— - . e s =

However, a Byzantine Generals solution does not by itself achieve attack
resistance. If ~outer 2 is reliable, it correctly executes the algorithm. The solution only
guarantees that if z is reliable, then all correctly operating processors agree on the
message 2z sent. No restrictions are placed on the contents of the message it transmits.
To achieve attack resistance, it will usually be necessary both to restrict 2's behavior and
to ensure that reliable routers detect any violation of those restrictions.

1.3 Types of Indirect Attack

Messages are constructed by routers, whose hardware or software may fail or who
may be subject to malicious outside intervention. Therefore, we must assume that any
message, and in particular any network control message, may be subject to alteration or
fabrication. Several questions immediately arise:

(1) What types of indirect attack can te made on a network?

(2) How does the choice of routing procedure affect the ways a network
can be attacked and the extent of damage in the event of such an
attack?

(3) What mechanisms can prevent such attacks or limit their damage?

We first discuss the types of indirect attack that can arise. We assume that router
behavior or router-to-router communication departs in an unexpected manner from
correct procedure. This may be due to hardware error, software error, or outside
intervention.

1.3.1 Violation of Procedural Restrictions

Network designers usually assume that all routers cooperatively follow a mutually
understood communications procedure. If this assumption is incorrect, trouble may
ensue. Whenever any restriction is made concerning router or link behavior, the effects
on network performance when the restriction is violated must be considered. It is not
possible to list all restrictions, since this form of abuse is specific to each different routing
procedure. However, we list two generally applicable restrictions, which when violated
can severely damage most networks.

Misuse of Priority

Packets transmitted between routers for the purpose of network control are often
sent with a higher priority than normal data packets. Routers usually process
high-priority packets in their queues before processing normal packets. Otherwise, a
flow-control packet sent to a congested router would only sit at the end of that router's
packet-processing queue, adding to its congestion; or perhaps it might even be discarded.

High-priority control messages are exceptional by definition, and usually imply
substantial amcunts of computation on the part of a router. An example is a routing

e e 4 e et e LA L L M b LM MM LAR R LR R R CBLUR AL RSB Y BAL RN E MR R NANA AR

update that requires recomputation of routing tables. The combination of high priority
and substantial router computation per packet provides an opportunity for abuse that
could overload a router or greatly retard data-packet processirg. Limitations on the
frequency of generation of control packets are usually self-imposed by routers.

Invalid Control Messages

In a dynamic network, routers must exchange control messages in order to mest
routing requirements. The exchange of control messages is what allows routers to adjust
their routes to account for changes in delay and topology. Since routers themselves create
most control messages, it is possible for routers to alter or fabricate them. An intelligent
filter placed on a link could also do this. An invalid control message may cause routers to
make incorrect routing decisions and possibly to supply incorrect information to other
routers. Several possible damages could occur: non-optimal routes, increased delay,
congestion, partitioning, and unnecessary routing computation. The amount of potential
damage depends both upon the routing procedure’s design and upon the nature of the
invalid routing data. In some cases, the damage results in a severely partitioned n:twork,
where subsets of routers are unable to communicate with one another. If this is dvz to
the absence of any communication paths between those subsets, it is unavoidable.
However, incorrect routing information may cause partitions even though communication
paths with adequate capacity do exist.

1.3.2 Masquerading as a Source or Destination

All traffic for network connections to separate hosts must pass through sors:
router. All that connection traffic is subject to being monitored by a router.
Furtherm~re, since each router can potentially access every host attached to the network,
it can also synthesize traffic to or from those hosts. Much of this exposure »f data can be
prevented by employing end-to-end encryption, but this method may be impractical for
many applications. Furthermore, in a commercial network, users might not bother to use
end-to-end encryption, under the mistaken impression that the network is secure. For
example, IEEE 802.3 networks use a broadcast medium, but there is little current
commercial interest in designing network interfaces that allow the transparent enciphering
of all station-to-station traffic.

Therefore, it is often possible for a router to monitor the end-to-end sequence
numbers used by connection-oriented communications protocols, allowing the router to
masquerade as either the source or the destination of a connection. Strictly speaking,
except for the possible congestion that could be caused, this form of attack does not
damage the network. Instead this attack damages the network's users. However, since
the network exists to service user needs, this is an indirect attack on the network.

A router cannot mimic a source or a destination for arbitrary connections. Assume
that a router is masquerading as the source of a connection. When a router mimics the
source of a connection, return traffic from the destination will be routed toward the

source's real address. When it mimics the destination, source traffic will be routed
toward the destination's real address. This places const:aints on any router that hopes to
successfully masquerade as source or destination for an extended period.

In the simplest case, assume that the attacking router lies on the route the network
has chosen to use for traffic to and from the affected husts. As long as this situation
holds, the attacking router can intercept all connection traffic for those hosts. This allows
it to ‘splice out’ the connection's source or destination host whenever it chooses. It can
then assume the role of the spliced-out host without an interruption in traffic. In
principle, a destination host may never receive any packets for that connection, since the
attacking router could mimic the connection initiation.

If the attacking router does not lie on the route taken by traffic between the
affected hosts, then evidence of the attack will be available to either the connection's
source or destination host. For example, if the attacking router mimics the so''rce but
does not lie on the route from the destination to the source’s real address, the attacking
router cannot intercept those packets; so the host at the real address will receive packets
sent by the destination in response to packets it received from the attacking router. If the
host at the source's real address is operating, it would see evidence of trouble on the
connection, or evidence of a connection that never actually existed. A robust
connection-oriented protocol would eventually respond to these situations by sending a
connection-reset packet to the destination. If the destination received a reset, it would
sever the connection, thus terminating the attack. A similar situation exists when the
attacking router mimics the destination.

Routers must not be allowed to arbitrarily redirect traffic in a network. If a routing
protocol allows this kind of redirection, it becomes much easier for a router to intercept
traffic. From this perspective, a protocol in which each router makes specific inquiries
concerning routes it may use, is preferable to a protocol in which each router broadcasts
updates that influence a large anumber of other routers.

133 Discarding Packets

The most common kinds of indirect attack involve the creation of invalid control
messages. These attacks are generally the most important to guard against, because their
effects can be so far reaching. They can be detected because the exchange of invalid data
provides direct evidence of an attack. However, an indirect attack that only deletes
packets provides no such direct evidence and may be difficult if not impossible for a
network to detect.

Assume that a single indirect attack is made by a router. Three classes of attack
discard packets:

(1) Randomly discarding some packets received over a link.

(2) Discarding, in a non-random pattern, packets received over a link,
for example, all packets from or to certain locations, or all those

R —— g

except ‘ping’ packets sent to test transmission or delay characteristics
of the link and attached routers.

(3) Discarding all packets received over a link.

Class 3 causes no special problem, since it emulates a severed link or a halted
router, and normal network rerouting would limit long-term damage. In class 1, if only a
smal! percentage of packets are discarded in & random pattern, a user would see a drop in
effective bendwidth, but end-to-end retransmission would ensure that data was eventually
delivered. However, classes one and two may not present any direct evidence of failure to

the network in the vicinity of the attack. In that case, the network cannot be expected to
take localized remedial action on its own.

If the percentage of discard is high, or if the pattern is not random (as in class 2),
then retransmission will not correct the problem. The indirect evidence of such an attack
would be severed end-to-end connections or the inability to initiate a connection. If an
attack is malicious, then no remote network testing (i.e. testing that involves sending
packets to/from the affected router) can be relied upon to provide evidence of the attack.
The attacked router or link could merely mimic the correct response. Furthermore, the
attack may interfere only with selected traffic that does not affect remote maintenance.

Finally, the attack may be periodic or inconsistent, so that tests fail to detect the source of
“he attack.

If the pattern of attack is consistent, it may be possible to develop techniques for
determining where the attack takes place. The point of attack would be located
somewhere along the route taken by the affected end-to-end traffic. The controlled
rerouting of affected traffic provides the only assured way oi localizing the source of the
problem. This type of routing adjustment is distinct from the kind of routing usually
discussed. It must purposely avoid the primary route the network would choose, yet still
prevent the creation of loops and congestion. Finally, if the point of attack becomes
known, one facility must be available to the network administration: the ability to forcibly
deconfigure a selected router or link from the network.

1.3.4 Generation of Artificial Traffic

Assur.ie that destinations detect and discard unexpected packets. Any router can
create artificial traffic for any destination toward which it can route packets. In so doing
it could overload the network in its vicinity. Assume that the attacking router uniformly
distributes the destinations. This could cause unnecessarily dropped packets and
connections, and rerouting due to needless congestion. However, the network as a whole
would not be severely damaged unless the router making the attack is on a critical path.
Assume that sufficient excess network capacity exists to absorb the artificia: traffic some
distance from the point of attack. Since the destination addresses are uniformly
distributed, the ratio of artificial to real traffic could be expected to fall rapidly with
distance from the attack point. W thout previously negotiated end-to-end flow-control

restrictions, it is difficult for routers to detect or to control this type of attack at or near its
source.

If the router creates artificial traffic with destinations chosen from a small set, then
those destinations may become overloaded. This form of attack need not overload the
network in tho attacking router’s vicinity, but may still overload selected destinations,
since one ge:izrally expects hosts to have a much lower packet-processing capacity than
routers. Thus, if certain destinations are critical to the performance of an important task,
this form of attack may prevent that task from operating successfully. However, as
before, this does not severely harm the network as a whole, and it is difficult to detect or
to control this type of attack at or near its source.

1.3.5 Attacks Made on Links

The links between routers can be attacked in a number of ways that are analogous
to attacks made by routers. They are:

-+ Inserting valid control messages.
+ Inserting invalid control messages.
Damaging or discarding packets.
+ Masquerading as a source or destination.

Each of these attacks is considered separately.

Inserting Valid Messages ~—- Spoofing

One time-honored mechanism for attacking an information system involves the
retransmission of messages. This ‘spoofing’ is accomplished by recording messages and
then later injecting them into communications channels. Encryption will not by itself
prevent this form of attack. By recording enciphered messages, the attacker can
masquerade as the sender when he retransmits a message. It is not necessary for the
attacker to know either the sender’s key or his encryption algorithm.

This problem can be largely prevented through the use of sequence numbering or
time stamps. Many communications protocols use sequence numbers to detect
duplication, although this is usually done because senders retransmit after timers expire,
not becausz spoofing is expected. Spoofing is a subject of current concern in the
ARPA-Internet [Mills-87]. Undetected spoofing has varying effects; in extreme cases, it
could cause complete network failure. Spoofing can occur in unexpected ways, as the
following example shows.

Communications channels are modeled as point-to-point links connecting network
routers. This is generally a gross simplification of the physical communication link and
represents only its logical behavior from the point of view of the network. Networks often

- 10 -

- Rt L it b S TR VI VAL B Y VS RTIL AR SN RV L AR AVIL ST L ER oV o TR SRR o TX oWR oY ru-n-ur;

E

use 56-kb/s telephone circuits as their primary long-haul communication medium. The
telephone companies, along the route the physical communications circuit actually travels,
can make the circuit appear to a customer as if it were a dedicated, isolated,
point-to-point link. However, between local exchanges in the U.S.A., twenty-four 56- or
64-kb/s circuits are usually multiplexed into a single T1 circuit. Twenty-eight T1 circuits
may be multiplexed into a T3 circuit, and so on.

Two separate network links may therefore share a common circuit. The physical
hardware that performs the multiplexing and demultiplexing sometimes has a transitory
failure that causes frames from one circuit to be exchanged with another. From the
network’s point of view, this looks as if a packet is removed from the link upon which it

"was originally transmitted and is suddenly inserted into another link. Unless special care

is taken, such an event may nit be detectable.

These events, though rare, have occurred and have caused problems for networks.
For example, the ARPA-Internet has two major long-haul components: MILNET and
ARFANET. Valid routing packets between two routers of the ARPANET have appeared
on links of the MILNET, presumably through this mechanism [Postel-87]. Since the
MILNET and the ARPANET use essentially the same routing software, those packets
seen1 valid to MILNET routers but contain very confusing and incorrect data.

Although spoofing can be prevented, its presence as a result of multi/demultiplexor
failure is generally not expected. It is an excellent example of how an event entirely
outside the network hardware and software designers’ control could create a network
failure. Situations such as this are obvious only in retrospect.

Inserting Invalid Control Messages

A filter placed on a link can selectively alter or insert messages, including network
control messages. The effects on a network are similar to those that occur when a router
creates invalid control messages.

Discarding Packets

A filter placed on a link can selectively alter or discard any packets that pass
through it. The effects on a network are similar to those that occur when a router
discards packets.

Masquerading as a Source or Destination

A filter placed on a link can potentially monitor all traffic that passes through it.
Assume that the necessary information is not enciphered and that the desired connection
traffic is passing through the filter. This would allow an intelligent filter to mimic the
correct responses of the actual destination without discovery by the other end of the
connection. For the same reasons it would be possible for the filter to mimic the source

- 11 -

of the connection. The effects cn a network are similar to those that occur when a router
masquerades as a destination.

A filter could also insert artificial traffic. The effects of this are similar to those
that occur when a router artificially creates traffic.

1.3.6 Remote Network Maintenance

Some networks are designed to allow a network administrative center to control
and monitor routers. This is useful for examining patterns of network use, or for allowing
the remote detection and correction of problems. One common capability is the ability to
use the network itself (or a phone line) to load software, patch, and/or restart a router.
The ability to remotely reload routers provides an avenue for attack. If a malicious user
can reload router software, router function cannot be guaranteed. A solution to this
problem is to never let software be reloaded. However, for router software to reside
exclusively ii: read-only form implies a fixed software architecture. For a developing
network with non-mature software, this is probably unrealistic.

Operating experience within the DARPA Internet suggests that remotely controlled
loading may be best. Such capability must be carefully protected by authentication
mechanisms, which are relatively easy to achieve, because there are few administrative
centers compared to the number of routers. It is realistic to require passwords before
granting internal access to each specific router, to assign keys, and to use end-to-end
encryption of control messages sent by an administrative center. This nearly eliminates
the possibility that invalid software or commands can be sent by some source
masquerading as an administrative center. Storage of the administrative password and
key tables can be restricted to one or a few centers where their use is carefully monitored.
Message replay should be prevented by using time-stamps and sequence numbers.

1.3.7 Misuse of Multicasting

Multicasting allows a subset of destinations to be identified as a group. It has
become increasingly popular with the spread of local area networks, since many of them
support multicasting or broadcasting within their cable segments. A multicast group may
also be considered as a subset of destinations with no relationship to any particular
subnetwork. Membership in the multicast subset may be dynamic, with specific
destinations allowed to join or leave the subset. Membership may also be regionally
defined.

A single multicast packet potentially causes many packets to be delivered. Special
actions are taken to implement the transmission and reception of multicast packets. In
general, a multicast packet requires more compuiing within routers than does a standard
data packet. It also requires each recipient in the destination subset to examine a copy of
the packet.

Transmission of a multicast packet by a host is infrequent relative to standard data
packets. Their use is limited to those occasions where their one-to-many characteristic

-12 -

MR WA AT R F MR LT W AR LA LR WO B OO W WO UM AW LA U LA U LW LA

provide a distinct advantage. This recognizes their expense both to the network and to the
members of the multicast group. If multicasting is abused, portions of an internetwork
could become overloaded as could the members of multicast groups. The limitation
usually placed upon the transmission of multicast packets is ‘good network citizenship.’
Both routers and hosts can abuse this facility.

1.3.8 Server Malfunction

As network software becomes more sophisticated, the number of remote services
grows. Some of these services are now necessary for correct network operation. When
servers are important to basic network operation, they provide an avenue for indirect
attack. An example of such a service is the Name-to-Address mapping now being used
in some large networks. The Internet version of this is the Domain Name Service
[Mockapetris-83].

Users of the service often know of only one server, their initial contact, and rely on
that server to provide needed information. The server usually responds to user requests
either by referring the user to other more appropriate servers or by returning the
requested information itself. The location of these other servers is sometimes determined
by a discovery mechanism.

If some server possessing only limited information masquerades as a source of
more global information, requests for information may be ‘short-circuited.” T.ae correct
server may never receive the enquiry, a server may claim it has the requested information
when it does not, or false information may be returned to the user. That portion of the
network serviced by the malfunctioning server is der..ed access to correct information. In
the case of a domain name server, this can effectively partition a network. This has
already occurred at least once in the Internet, when a server incorrectly claimed to be a
source for information that it did not possess [Lenoil-87]. The result was an inability to
translate names to addresses for a portion of the network.

-13 -

FOCEOEN RN N

2 Examples of Protocol Behavior in the Presence of Invalid
Routing Data

One category of attack affects all dynamic routing procedures: the circulation of
invelid routing data. Assume that one network router receives a single control message
containing invalid routing information. We will discuss the extent of potential damage in
the context of three commonly used routing procedures that meet practical routing
requirements:

1. Internet routing.
2. ARPANET ‘shortest-path-first’ (SPF) routing.
3. Hierarchic routing.

Of these three, the Internet and ARPANET procedures are both true shortest-path
procedures. They represent a class of procedure that is heavily used today, but neither is
suitable for large-scale applications. Hierarchic routing uses a modified form of
shortest-path procedure that is suitable for large-scale application.

2.1 Internet Routing

The Internet uses a shortest-path routing procedure that measures distance by
counting the number of gateway-to-gateway hops; the distance to any immediate
neighboring gateway is one unit [RFC 823]. Thus, for a particular source-to-destination
path, a cost of ten implies that ten internetwork gateway-to-gateway transitions occur on
the path to the destination. Although simple, this procedure has several drawbacks, and it
has been suggested that it be replaced by the ARPANET SPF procedure. Those interested
in this topic should read Rosen’s comparison of the two algorithms [Rosen-81-1].

O, ©
(D—

2.11 Invalid Routing Updates

We ignore the effect of the intervening networks between gateways (as does the
Internet routing procedure) and model the Internet as a set of routers connected by links
that represent the intervening networks. Figure 2 shows a fragment of this network ir
which routers a and ¢ are immediate neighbors. Events such as the addition of a new
router or a new link, the return of a link to service, or the removal of a link, cause a
router to create updates that are sent to its neighbors. An update sent by router a to a
neighboring router ¢ contains a table of the current shortest distances from a to all other
destinations in the network for which a believes it ic as close to or closer than c.

Figure 2.

If router ¢ receives an update from its neighbor a, it examines the update to
determine whether or not it is different from the last one received from a. If the update is

- 14 -

not different, it is discarded and no action is taken. If it is different, then c¢ takes the
following actions:

1. It recomputes its shortest-path routing table.
2. For each neighbor, including a, it computes and sends an update.

Updates are exchanged until no router receives from any neighbor any new routing
information. At that point each router knows the next hop taken on the shortest path to
any non-partitioned network destination.

Network Partitioning

Let the function C(x,y) represent the delay or cost of communication between x
and y as seen from x's point of view. The actual values represented by C(x,y) fluctuate
throughout 2 network as topology and communications patterns change. Let
R(x,y,C(x,y),2) represent the sending of a routing update from x to z; this update informs
z of the cost to communicate from x to y. Generally, the values C(x,y) received by a
router cannot be verified without additional knowledge. In the absence of that knowledge,
a router must trust such values.

Assume that C(c,v) » 1. Consider the effect if router a sends R(a,v,1,c). Router ¢
will now calculate a temporary cost of C(c,v) = C(c,a)+1. This value is near the lower
bound on possible values for C(c,v) if C(c,a) is near 1. To c this will normally indicate
that the path to v that starts with the first hop c—a is its best path to v. This incorrect

| assumption causes ¢ to change its routing table. The new table will direct traffic that is
‘ eventually intended for v, and which passes through c, to a. Furthermore, ¢ will send its
| updated routing data to other routers as required by the routing procedure. This process
i will quickly propagate the incorrect routing information.

The extent of update propagation depends upon the values in the update, current
costs on links, and current network topology. For demonstration, assume that the network
topology is a grid, as in Figure 3. Router a now alters its routing table so that C(a,v) = 1
and sends R(a,v,1,c), where c¢’s previous cost to reach v was six. The value
Cimp(c,v) = C(c,a)+1 = 2. This is smaller than six so ¢ will alter its routing table and
send R(c,v,2,k) to all of its immediate neighbors k.

This process continues until routers receive updates that indicate they are as close
to v via their current path as they would be by the path via a. Those routers do not need
to change their routing tables, so they cease to propagate the incorrect information. In
Figure 3, the resulting costs to reach v are placed beside each router. Clearly marked is
the boundary beyond which routers do not change their tables. The network has been
partitioned into one section which can reach v and another which cannot. All routers
within the partition containing a will forward data for v toward a, resulting in useless
congestion.

The incorrect value sent by a router need not be as small as one. Any incorrect
C(x,y) value that is smaller than the values of C(xy) for all its immediate neighbors

- 15 -

Figure 3.

Partitioning

causes partitioning. Sending a smaller value creates a larger partition. Once established,
an incorrect path-set is stable. Only by disconnecting the router that sent the invalid
update, implying C(a,v)=co, or when a resends the correct value for C(a,v) = 7, can the
network be restored to its correct operation. In the Internet procedure, a gateway can
send many incorrect C(x,y) values in a single packet. The transmission of such a
‘black-hole’ packet would rapidly cause the network to cease effective operation.

Persistence of Damage

A partition caused by incorrect routing information will remain until contradicted.
The router a, which has become the center of this type of partition, will detect the
presence of the partition when it receives an erroneous update (assuming that it was not
itself the cause of the error). Once a detects the problem it must transmit the corrected
R(a,i,C(a,v),k) to all neighbors k, and to all routers i, for which invalid topological data
was supplied. This ensures the eventual correction of the partition, but only if the attack
was accidental.

A router that is being used to make a malicious attack on a network cannot be
expected to act in the network’s interest. Under this circumstance, a mechanism that
removed the offending router from the network would be the only one that could reliably
restore correct network function. Unfortunately, a's neighbors cannot determine that a
partition is caused by an invalid upcate sent by a without additional information. Without
better lower bounds for C(a,v), most values supplied by a seem reasonable. Furthermore,
detecting the source of a bad routing update may be difficult. If ¢ were malicious it could
create a routing update that makes it appear as if ¢ had just received an update from a,
claiming that a had a link to v.

2.1.2 Detection Does Not Imply Prevention

In certain cases routers may be able to determine that a particular control message
is invalid. In Figure 2, when v receives a routing update that eironeously claims a is

R W o AT B R VR . B, 8 37 Y. BT, AT, AT W W AN AW VW T4t "av A VW e VT,

SDEERIRP U

connected to v, then v can determine that the update is invalid. It seems that v merely
needs to broadcast to all routers the fact that a's update is invalid to prevent any damage.
However, in the general case there is very little v can do to remedy the situation.

First, v must be able to determine who actually generated a particular message,
which may not be possible. Second, allowing a router to send a message claiming that an
update from another router is invalid would make the network more vulnerable to
malicious attacks. If this were allowed, a malicious router would not need to send invalid
updates; instead, it could claim that other routers had sent invalid updates. This
technique could be used t> freeze the routing state of other routers, eventually producing
static routing. Finally, by the time v received the invalid update, much of the partitioning
may have already occurred. The resulting routing and congestion problems may make it
difficult for corrective messages from v or an administrative center to reach the affected
routers.

2.2 ARPANET Routing

The shortest-path first (SPF) routing procedure used in the ARPANET contrasts
strongly with that used in the Internet [McQuillan-80][Rosen-80]. Each router
periodically measures the round-irip delay to its immediate neighbors and uses that as a
measure of the cost to those neighbors. In the ARPANET, when a router builds an
update, that update contains only the identity of the router’s neighbors and its measured
delay to them. The update is then broadcast by flooding to all other routers in the
network. This information is employed by each router to construct a shortest-path
spanning tree of the network, with itself at the root. Convergence to a network-wide
consistent solution is supposedly more rapid in the ARPANET than it is in the Internet,
and the amount of information exchanged is much smaller.

2.2.1 Invalid Routing Updates

At first glance it appears that the ARPANET routing procedure is protected from
the distribution of invalid routing data. A router x can lie about delay only to its
immediate neighbors. This may cause other routers to create non-optimal spanning trees
that use x, but it is unlikely to cause severe partitioning. However, the protocol allows a
router to report a cunnection to a new neighbor. Furthermore, updates are distributed via
flooding, and a router can generate fictitious updates that appear to have been originated
by another router. Returning to Figure 2, this implies a can falsely claim that it possesses
a low-delay link to v, or a can generate a false update claiming that some other router has
a low delay link to v. Since ARPANET routing is another shortest-path procedure, the
spanning trees calculated by the other routers in the network will produce partitioning
similar to that which took place in the Internet.

The damage is limited by the choice of delay rather than hop-count as a measure
of cost. If congestion due to partitioning causes sufficient increases in delay, then within
the partition the implicit flow control associated with this routing update procedure will
redirect paths away from the congested area.

-17 -

23 Hierarchic Routing

Hierarchic routing, first analyzed by Kamoun [Kamoun-76] [Kleinrock-77],
divides addresses into fields. Each field is associated with a particular level in the
hierarchy. Each router resides within one particular lowest level cluster of routers in the
hierarchy. Adjoining lowest level clusters are grouped into higher level clusters; these in
turn may be grouped into yet higher level clusters, and so on. A router knows specific
routing information about each router in its own lowest level cluster, and less specific
information about sach successively higher level cluster.

Figure 4 shows the routing table for a three-level hierarchic network. Router
[1.1.1] resides in a particular level-0 cluster with other routers [1.1.2], [1.1.3], and
[1.1.4). It is part of the higher level-1 cluster [1.1.], which is in turn part of the higher
level-2 cluster [1.). The entries marked with asterisks are unnecessary as they represent
router [1.1.1]’s distance to its own clusters.

The routing table is similar to the shortest-path tables discussed in sections 2.1
and 2.2. Router [1.1.1] knows specific information about paths to other routers within its
own lowest level cluster. Within successively higher levels, less is known about individual
routers within a cluster; a router knows only a shortest path toward some router inside
clusters above level-0. For exampls, router [1.1.1] knows the next hop on the path to
clusters [1.2.] or [3.], and the distance associated with those paths. It does not know
paths to specific routers in those clusters.

As packets approach their destinations, more precise routing information does
become available. For example, a packet from a router within cluster [2.], destined for
[1.1.1], will eventuaily reach some router in cluster [1.]. That router knows a path toward
cluster {1.1.]. When the packet reaches a router in cluster [1.1], that router knows the
final path to [1.1.1].

Hierarchic rou.ing solves problems of scale associated with shortest-path routing:
routing table size, routing decision time, and update processing time that grows with the
number of hosts. Hierarchic routing retains the capability of finding short paths under

Next Hop i
Destnation | Node | Delay| Count Figure 4.

i.1.1 .
Cluster level ¢ 11.2
1.1.3 L
1.1.4
Cluster lc vel 1 1.1. . Routing table for 1.1.1
1.2,
1.3.

Cluster levei < 1. *
2.
3.

most circumstances by requiring routers to exchange updates. Update information does
propagate throughout the network. Therefore, a router can send invalid updates that
affect the entire network. In particular, a router can claim it has a short path to a
high-level cluster. For example, [1.1.1] could erroneously claim it had a path of length 1
to some router in cluster [2.].

23.1 Dynamic Organization

Several large-scale hierarchic organizations have been proposed for computer

networks. Details vary with each proposal, but in general, for the purpose of managing
the exchange of routing information within the hierarchy, controlling cluster membership,
or directing the routing itself, a group of routers elects a representative that is principally

responsible for its group. These representative routers have been variously called

coordinators, leaders, or cluster heads. In a real network coordinators will eventually fail
due to hardware failure or software errors. This raises the question of their dynamic
assignment.

One solution to the problem of dynamically choosing a coordinating router is to
use a parallel election algorithm [Garcia-Molina-82]. Election or invitation algorithms
assume that a number of network properties hold for their correct operation:

All routers cooperate, and there are no software errors.

If router i receives a message that claims to come from router j, then
router j did indeed send that message.

When a router fails, it immediately halts processing.
A router does not behave in an unpredictable manner.

There is no tampering with data in any messages sent between
routers.

A temporary hardware failure or malicious attack could violate each assumption.
There is no guarantee either that a particular group of routers will elect a single
coordinator, that any group coordinator will eventually be chosen, or that a router will
know within which group it resides. For example, une router could ignore the election of
another router as coordinator, and arbitrarily assume the coordinating role itself. To be
attack resistant, a hierarchic network that uses election aigorithms must demonstrate that
any damage resulting from the failure of the election algorithm would be limited to the
immediate vicinity of the offending router.

24 ANSY/OSI Hierarchic Routing

A variant of hierarchic routing is the Intermediate System-to-Intermediate System
(IS-IS) routing procedure within the OSI reference model [ANSI X3S3.3]. Under this
model a three-tiered system is proposed. Tiers in this proposal are each identified with

-19 -

one or more hierarchic levels, corresponding to regions of differing administrative
control. - Tier one is identified with hierarchic level 0, and performs End
Syster~to-Intermediate System (ES-IS) routing. Tier two is identified with levels
1, 2, ..., 24, in which one or more Clusters comprise a Domain. Tier three is identified
with levels 3+, ..., 3+i+j, comprising a Dominion. Above this (although still considered to
be in tier three) is the Common Dominion. A minimum of four hierarchy levels is allowed.
Hierarchic routing is proposed for tiers two and three. Tier one is considered small
enough that flat routing may suffice.

A Domain uses a common set of routing procedures. It may or may not be
transitive, in the sense that it will act as an intermediary between other domains. A
Dominion is differentiated from a Domain in tha: it implements a set of routing policies
prescribed by its routing authority. These policies control the ingress and egress of
information crossing the Dominion’s boundary. At the Common Dominion-level, all
routing policies must be arrived at via a multi-lateral agreement reached between all
participating Dominions.

24.1 Noa-Uniformity of ANSI/OSI Routing

The proposed ANSI standard suggests that Common Dominion routing be
determined at the Application Layer rather than the Network Layer. Before
communication begins between applications, extensive end-to-end negotiation would take
place to exchange authentication and billing information. This sets it strongly apart from
routing procedures we have discussed earlier. The routing database mairtained for
Common Dominion-level communication is considered sufficiently stable and
infrequently needed that it can be obtained from a System Management authority. The
routing algorithm would be Static/Quasi-static as opposed to Distributed Adaptive.

Routing at the Dominion level and lower should allow both Static/Quasi-static and
Distributed Adaptive routing as options. The Distributed Adaptive routing procedures
discussed, although not specified, strongly resemble the ARPANET and Internet routing
procedures in intent and mechanism. Therefore, it is at the Dominion level and below
that dynamic routing procedures may provide oppertunities to damage the network.

- 20 -

I T T e L L W R N A Y T TN o I el L AT AN LR RV AR5 TR W X Y \‘g

o

3 A Detalled List of Possible Attacks in Two Routing Procedures

The circulation of invalid routing data is only one common way a distributed
dynamic network can be attacked. Many other forms of attack exist, but these are usually
specific to particular network procedures. To illustrate this, we list some of the wa s two
specific procedures can bLe attacked. Assume that a router violates procedural
restrictions, and that it acts alone. Cooperative effects that arise from simultaneous
violations at more than one point in the network are not discussed.

3.1 ARPANET (SPF) Procedure

Some kinds of attack can damage a network much more severely than the damage
that results from the circulation of invalid routing updates. The ARPANET SPF
procedure provides an example. The restrictions for the ARPANET procedure were
derived from reports on ARPANET routing algorithm development [Rosen-80][McQuil-
lan-78-2]. The following discussion assumes familiarity with the ARPANET routing
procedure. The relevant portions of those references are summarized in Appendix I for
the reader's convenience. Some of the numeric values discussed may have changed since
the references were published.

3.1.1 Effects when Violating ARPANET Routing Procedure Restrictions

In this section we will briefly discuss the effects on the network when an IMP
violates the routing procedure restrictions in the ARPANET. We assume that the
misbehaving IMP acts alone. Cooperative effects that arise from simultaneous violations
among more than one IMP are not discussed.

Computing the Wrong Spanning Tree or Choosing the Wrong Outgoing Link

After receiving an acceptable update, an IMP calculates a new lowest cost spanning
tree for the network. This is used to choose the outgoing link for each destination. A
central assumption of the routing procedure is that all non-partitionecd IMPs calculate
their spanning trees from the same data. Failure to meet this restriction results in
network-wide inconsistencies. The same result occurs if the tree is calculated incorrectly.
If an isolated IMP culculates its tree incorrectly, then it will choose the wrong outgoing
link for a set of destinations.

Assume that IMP | chooses the wrong outgoing link for a destination. Either IMP i
sends to neighboring IMP j, and j’s decision produces a route back to i resulting in a tight
loop, or j's decision results in another route that avoids i. In the first case, a destination
may appear unreachable, and a partition has bsen created. Both routers could become
overloaded while the loop persists. This situation can be detected and avoided by j. In
the latter case, the detrimental effect is a loss of efficiency.

Age-Value Field

The age-value field limits the time any particular update can reside in the network
before being discarded. Properly chosen, this ensures that, when a partition occurs and

-21 -

after the age-value limit expires, no pre-partition updates from one part of the partition
are circulating in the other part of the partition. Also, two updates from the same IMP
must not be allowed be circulate in the network simultancously for long enough that their
serial numbers wrap around. With a 6-bit serial number field, this occurs every 32
updates.

At the maximum update generation rate of 12 per minute, 32 updates require 160
seconds. The age-value field, in conjunction with its associated clock, must be used to
discard any updates substantially before they are 160 seconds old. The maximum
age-value that an update packet can specify is eight, and an IMP age-value clock ticks
every eight seconds. Thus the maximum age an update packet can reside in the network
is 64 seconds plus network transit time. (Transit time is nominally -100 ms and is
therefore negligible for this purpose.)

An IMP can violate age restrictions in essentially two ways:

(1) Not use the maximum age-value for updates it originates.
(2) Alter the age-value field of updates it transmits.

If the IMP does not insert the maximum legal age-value into the updates it
originates and instead inserts a smaller value, then possibly some of its updates will have
aged sufficiently that they may not be transmitted by IMPs to their neighbors across a

partition when that partition ends. If this occurs it can result in a temporarily inconsistent
network-wide routing database.

An IMP can alter the age-vaiue of updates it transmits via flooding. This can
occur selectively, or the entire age-value vector could be altered in three ways: up, down,
or in such a way that the values are not decremented when the clock ticks occur. If
age-values are decremented, effects will be similar to age violation (1) above.

Assume that IMP j keeps an old update from IMP i in its database after the
update’s age-value would normally have decremented to zero. Assume that j retransmits
the update from i, while i transmits a new update with a different serial number. This
results in two updates that originated from one source, circulating in the network
simultaneously. If sufficient time has elapsed during the partition, serial numbers may
havs wrapped around, and the old update from j may appear more recent than the new
update i*om i. The old update could circulate throughout the network, overriding the new
update and impairing performance. This performance degradation could persist for many
minutes.

Seriai Number

Serial numters within updates are used by IMPs to determine the relative age of an
update. If a newly received update is more recent and its age-value is non-zero, it
replaces the older update in the IMP’s internal database. By altering serial number values
in the updates it transmits, an IMP renders useless the test for relative age.

-22 -

- L S A 2 W I ACIEN BE B A AN A M W AN A M M R TR AW RN AU M A AU AN AR RN ARANARR AN VU T AR UL NN

If IMP i alters upward a serial number for one of another IMP j's updates from
value k to value 1 and retransmits that update, then a series of updates from IMP j will be
ignored by a portion of the network until IMP j issues an update with a serial number
more recent than 1. Other IMPs will ignore th:ose updates in the range [k+1, 1. IMPj can
notice this alteration if it receives a copy of the update with serial number 1. IMP j at this
point knows that something is wrong somewhere in the network with some IMP (possibly
itself). Its safest strategy would be to wait until the age-values of the update it most
recently sent decrement to zero, and then to retransmit using serial number (1 + 1).

If IMP i alters two or more serial numbers from another IMP j and retransmits
them, then the possibility exists for an infinite cycle of updates. Assume that three
updates originating from IMP j exist simultaneously in the network. Whenever an IMP
creates a new update it increments its serial number. Serial numbers are limited to the
range 1-to-63, with zero specially reserved. When incremented past 63, they begin again
at 1. When an IMP receives two updates from the same origin with two serial numbers x
$ y, it must determine which is the more recent. If either y >x and y-x < 32, or
y<x and x-y > 32, then y is assumed to be more recent than x. Otherwise x is
assumed to be more recent than y. When an IMP accepts a more recent update, that IMP
immediately retransmits the update to its neighbors.

Using that determination, there exist sequences x < y < z that form a cycle, with y
more recent than x, z more recent than y, and x more recent than z. An example is
{20, 30, 60}. The simultaneous existence of updates originating at the same IMP, with
serial numbers that satisfy these restrictions, can create an indefinite cycle of update
acceptance and retransmission. Since updates are processed by IMPs at higher priority
than normal data messages, this can effectively halt the network.

On October 27, 1980, just such an event occurred in the ARPANET. It resulted in
a catastrophe that disabled the entire network for several hours [Rosen-81]. There were
four contributing causes:

1. Hardware failure. A section of an IMP's memory became unreliable.

2. Human intervention. The parity-checking circuitry was disabled, and
an IMP was allowed to continue operation because human operators
observed that most parity faults were spurious.

3. Physical IMP implementation was slow enough to encourage
short-cuts. Internal routing table data was not protected by
checksums. As a result, corruption of internal data was not detected
and that data was distributed.

4, The routing procedure. Routing data is exchanged among all active
IMPs in a way that allows a cycle to develop. This resulted in the
continual redistribution of routing information. The resulting CPU
demands upon the IMPs caused them to cease effective operation.

-23 -

Those factors combined to cause one particular IMP to transmit updates with the
sequence numbers 8, 40, and 44, in that order. This is a cycle, and it caused the three
associated updates to flow indefinitely around the network at high priority. As a result,
all the network IMPs expended most of their CPU time processing and retransmitting
routing update messages.

It required some time to diagnose the problem and nearly four more hours to
correct the problem and restore the network to normal. . The source of the problem was
narrowed to one of two IMPs that had experienced intermittent hardware errors. It is
important to notice that all other IMPs that .received these updates were operating
correctly. Halting the IMP thought to be the source of the problem was not sufficient.
The network control center (NCC) had to load into each IMP a code patch that directed it
to ignore updates from the damaged IMP. Under normal conditions this would take only
a few minutes, but under these circumstances it took hours. It was fortunate that the
ARPANET had only approximately 50 IMPs and not several thousand.

It is clear that many such update sequences can be found. This occurred entirely
by accident, from an unlikely set of circumstances. Network designers did not consider it
a serious possibility. However, a malicious router could easily create this situation and
halt the network. Such an attack would be extremely damaging, difficult to prevent, and
difficult to correct once it occured.

Update Frequency

An IMP must generate an update at least once per minute, and no more than 12
times per minute. If IMP i generates updates at too low a rate, its updates will have their
age-values decremented to zero. If a pertition ends, this could result in valid updates
from i not being transmitted across the former partition boundary. This in turn may lead
to network-wide database inconsistency.

If updates are generated too frequently, the overhead associated with processing
them throughout the network becomes excessive. Updates are processed at a higher
priority than normal data messages, and each acceptable update also implies substantial
computation on the part of the IMP that receives it. Furthermore, they are distributed by
flooding to all network IMPs. A sufficiently high generation frequency of acceptable
updates would effectively halt the network.

Timers

Timers are used by IMPs to trigger age-value decrementation and frequency of
update. Timers are usually driven by a hardware clock source. A malfunctioning clock
can produce violations involving age-value or update frequency. If the clock runs too
slowly, then age-values will not be decremented when they should, relative to other IMPs
that have properly functioning clocks. Similarly, updates may not be generated as often
as required. If the clock runs too quickly, then age-values will reach zero too soon and

- 24 -

updates.may be generated too often. The possible effects of these events were discussed
above. .

If the restrictions invclving the timers in IMF i associated with its input lines are
not followed, then either updates will be unnecessarily retransmitted to neighbors or not
retransmitted when necessary. In the former case, excessive delay and overhead may
occur in the immediate vicinity of IMP i. In the latter case, one of i's neighbors, j, might
not receive a good copy of an update. Unless i's removal would partition j from the
network, flooding retransmission by other IMPs would ensure that j received a copy.

Refraining from Flooding

When IMP i judges an update to be acceptable, that update’s relevant data must be
stored internally, and then the update must be .retransmitted to all i’s immediate
‘ neighbors. One way i can violate routing procedure is to selectively block retransmission.
, In a well-connected network this would not cause great harm.

3.12 In Conclusion

The ARPANET routing procedure requires all IMPs to simultaneously obey a
number of restrictions. Failure to meet these restrictions can result in network-wide
failure. Irrespective of other forms of attack (such as invalid delay data), the ARPANET
procedure provides little or no protection from malicious attzeck. Furthermore, as we
discovered in the October 1980 incident, deliberately malicious behavior is not required.
Network-wide failures can result from relatively simple, short-lived, transient errors in
hardware.

3.2 Cartesian Routing Procedure

The Cartesian routing procedure is a relatively attack-resistant routing procedure
[Finn-87]. We will examine it in contrast to the ARPANET procedure. Under Cartesian
routing, addresses are two-tuples that separate location and identity. From the location
portion, a distance can be calculated from any router to any address, whether fixed or
mobile. The Cartesian procedure is not based upon shortest—path techniques, as were the
others previously discussed. It does not periodically propagate routing information
throughout the network. Instead, routers determine from a packet’s destination address
whether or not a neighboring router makes progress toward (is closer to) that destination.
If a neighbor is found that makes progress, then the packet may be forwarded to that
neighbor. If no progress is made, a router initiates an enquiry in the surrounding region
of the network for any router that makes progress. This is accomplished by means of
flooding, where the radius of the enquiry is limited by hop-count. This flooding-limit f is
usually a small integer.

The key difference between this procedure and others modeled on shortest-path
techniques is that routing information is not broadcast throughout the network when a

- 25 -

topology change is noticed. Instead, routing information is specifically requested by a
router when it cannot make further progress toward a packet’s destination. In large
Cartesian systems, the network may be divided into a hierarchy in which each higher level
possesses communication links of greater hop-by-hop distance. This may be used to
keep hop-counts low when the distance between source and destination is large, and to
route around large topological irregularities.

3.2.1 Maximum Hop-Count Flooding Limitation

When a router cannot make further progress toward a specific destination, it
initiates a flooding procedure, which searches for a source route to another router that is
closer to the destination than itself. The spread of flooding requests is controlled by
limiting the range they propagate from the initiator to no further than a specified number
of hops, £. Routers that receive a flooding request packet add their address to a source
route list in the packet header. If they are closer to the destination, they respond
positively to the requestor with the source route between themselves and the recquestor.
Otherwise, if they cannot reply successfully and are less than f hops distant, they forward
the request one hop farther. From zero to many responses may result, with each response
containing a source route of length < f+1. If no response is received, then after a
predefined period the destination is assumed to be unreachable. A detailed description
may be found in [Finn-87].

For a network of N routers, where on average each rcuter has C immediate
neighbors, the upper bound on the number of routers that could possibly receive a routing
request from any particular router is limited to C(C-1)f-1. A router supplies routing
information on request. Its response can only be seen by those routers along the path
back to the requestor, which is at most f routers. The number of routers potentially
affected by an invalid routing update conveyed in a single response is therefore strictly
limited. One measure of network susceptibility to the supply of invalid routing data is the
ratio of the maximum number of routers affected by an update to N. For a Cartesian
procedure and a large network f/N«1. For hierarchic and shortest-path procedures the
ratio approaches one.

Drawbacks of a Maximum Flooding Limit

In some situations, the qualitative cost of a fixed flooding limit may outweigh the
protection advantage gained. Consider the situation in which a region of the network has
been extensively damaged, requiring a flooding limit greater than f in order to open
connections that proceed around the damaged region. A more robust variant of Cartesian
routing would have no absolute enforced network flooding limit, instead allowing a user to
exceed the normal flooding limit for certain connections or traffic categories. A slightly
more restrictive option would allow the flooding limit of local routers to be adjusted by a
local routing authority. These options would be of value to a military network.

3.2.2 Effects of Violating Cartesian Routing Procedure Restrictions

Some of the effects that result when a router violates Cartesian routing procedure
restrictions are discussed in this section.

Violating the Flooding Procedure

A single router may violate the limited flooding procedure in several ways, and
those violations may have a number of effects on the network. A router may:

route a packet on a path that makes no progress.
ignore the flooding limit.
ignore or alter the flooding response time limit.
not place its address into the source route list.
 illegally alter the source route list.
- fail to reply successfully when it should, or reply when it should ;1.

fail to forward a flooding enquiry when it should, or forward one
when it should not.

Forwarding to Routers that Make No Progress

The most basic routing error is to choose the wrong entry from the routing table or
to ignore the table. Assume that a router & chooses to forward a packet to an immediate
neighboring router j, whose location is not closer to the destination’s location. This could
result in a loop, with the packet being returned to 2 (possibly by j).

Router A may also choose an incorrect source route from its tables, or create one
and use it to forward the packet. This is equivalent to an intermediary router that alters
the source route of a packet passing through it. If the resulting source route is illegal (no
such route exists), that problem will be determined en route, and the packet will be
discarded. Otherwise, the packet will reach the end of the source route. The routing
decision made there may result in a loop.

Sometimes this alteration can be detected and avoided. Any intermediary or
terminating router can examine the progress limit field, the last address on the source
route, or the destination location, and determine whether or not the packet makes
progress toward its destination. In a single-level Cartesian network, any packet that fails
this test may be immediately discarded, since the rule of progress has been violated.

Assume that router 4 is the first router on a source route, i is an intermediary
router, and j the last. In a multi-level Cartesian network 4 and j are on either the same or
adjacent levels of the network routing hierarchy. If router j resides on the same level of
the network as router & or below it, then any packet that fails this test may be immediately
discarded by i or j, since the rule of progress has been violated. If j resides in a level
above that of A, then the packet should not be discarded by i. If a packet fails the test and
is not discarded, it must have moved up a level to be forwarded there. The maximum
number of this type of routing error per paca>t is fixed, since each Cartesian network has
a fixed number of levels.

-27 -

Ignoring the Flooding Limit

A flooding limit field is included in the packet header that is set by the flooding
initiator. This field’s value is decremented whenever a flooding request packet is
forwarded one hop further. A router could illegally modify that value upward or
downward. When the value is decreased, the extent of the flooding search is diminished.
This could result in needlessly dropped connections. When it is increased, the limit of the
search is extended beyond the initiator’s requested limit. This adds to network overhead
but in some cases may actually prevent dropped connections.

The flooding limit can be enforced in a number of ways. An overriding network
upper limit F should be incorporated into the code of each router. If all routers examine
the field value of flooding packets that pass through them to ensure that the packet limit
field value of f «; F, then the most a single router can change the value is from one to F.
The length of the source route list could be limited in a similar manner.

Altering the Progress Limit Field

The progress limit field is used by a router, which has received a flooding request
packet, to determine if it has a neighbor that is closer to the destination’s location. If
there is such a neighbor, the flooding procedure is successfully terminated. If a router
decreases the limit field, flooding may be unsuccessful when it would otherwise have
terminated successfully. The possible results of this are:

sending notification of destination unreachable to the source
choosing a less desirable route
rerouting packets up-level needlessly in a multilevel network

If the limit field is increased, flooding may be successful when it would otherwise
have failed. This could result in a loop but can often be detected and avoided through
examination by intermediaries, as shown above in the section on forwarding to routers
that make no progress.

Limiting the Flooding Response Time

The Cartesian routing procedure relies on a clock for only one thing: determining
when to stop waiting for flooding responses. If this time limit is ignored or the clock is
too slow, end-to-end protocols would time-out, retransmit, and eventually assume that
affected destinations are unreachable. This would add some small amount of network
overhead. If the time limit is reached too quickly or the clock is tuo fast, possibly usable
flooding responses may be ignored. The effects of this are similar to those of decreasing
the progress limit field, discussed above.

Omitting an Address from the Source Route List

When a router receives a flooding request packet, it is required to append its
address onto a flooding router list. If o successful flooding reply is generated, this is a

_reverse source route to the flooding initiator, which then uses it as a forward source route

to a router that makes progress toward the destination. If a router does not place its

"address into the router list, an invalid source route is usually constructed. This may result

in an illegal routing entry being made by the flooding initiator. This implies that, for
some set of destinations, the initiator will now route traffic over a route that does not
make progress toward the destination. The effects of this were discussed on page 27.

Altering the Source Route

Any router along the source route, either in a fiooding reply packet or in any
source-routed data packet that passes through it, can alter that source route. The effect

~ of this was discussed in previous paragraphs.

Failing to Forward Correctly

A router may not forward a flooding request properly. As long as the flooding
limit £ has not been exceeded, it is required to add its address to the flooding router list
and transmit copies to all its neighbors except the one from which it received the request.
If it does not transmit all required copies, it diminishes the region of the network that is
searched to satisfy the flooding request. That could result in dropped connections.

Failing to Reply Correctly

A router may reply successfully to a flooding request when it cannot make
progress toward the destination, or the terminating router may give a false address.
However, this need not result in an incorrect routing entry in the initiator’s routing
database. In some cases, the bad router’s immediate neighbor on the reverse source route
can detect this and discard the packet. The initiator can also determine from the
terminating address on the source route it receives whether or not progress is made. It is
also possible for the initiator to detect alteration of the destination address that provoked
the flooding request. If an invalid response passes these tests, then (since it receives a set
of replies) the initiator may at times ignore invalid responses in favor of some other
response.

3.2.3 Effects of Altering Data Packets

Data packets have several fields which must be unenciphered within a router.
They are the source address, the destination address, the progress limit field, and the
source route. Each can be illegally altered by a router.

Altering the Source Address

The location portion of the source address is used by the procedure to inform the
other end of a connection of a change in the source’s location. This is used by the other
end to change its destination address and so to automatically reroute subsequent traffic to

the correct location. Altering the source address incorrectly will result in dropped

connections. The altered packet would proceed to the wrong location, would eventually
be discarded, and would add to network overhead.

Altering the identity portion of the address will either cause a packet to be dropped
by a destination gateway or cause it to be delivered to the wrong host. This could result
in dropped connections and would add to network overhead.

Altering the Destination Address

The effects of altering the destination address are similar to those created by
altering the source address.

Altering the Progress Limit Field

The progress limit is set in a packet after a routing decision is made. It contains
the distance of closest approach to the destination’s location that can be achieved, either
by forwarding to a neighbor or by a source route obtained through limited flooding. If the
limit field is altered, it could result in a loop. This can often be detected and avoided
through examination by routers that check for consistency of the various fields against the
progress criteria.

Altering the Source Route

The effects of altering the source route were discussed on page 27.

-4 Altering Field Values in Combination

An attack cai1 result in combinations of the alterations discussed above. The most
serious effect would be an undetected routing loop. As before, quite a number of these
attacke could be detected by routers that check for consistency of the various fields
agaii t the progress criteria.

3.2 In Conclusion

The Cartesian routing procedure meets practical routing requirements. Unlike the
ARPANET procedure, it places relatively few restrictions on router behavior. It is less
efficient than the ARPANET procedure but far simpler to implement. The Cartesian
procedure does not possess the behavioral characteristics that would cause a complete
network failure if any single router were maiiciously attacked. Therefore, it is more
attack resistant than the ARPANET procedure. As will be shown later, the Cartesian
procedure is amenable to techniques that further improve its attack resistance by allowing
routers to detect invalid flooding data.

-130 ~

I e T e e L L T P VR P P SV TE R ST VRV VS, 'av, "o ¥ vy

4 Mechanisms for Reducing Exposure to Damage

Routing procedures define and restrict legal router and link behavior, These
restrictions vary for different routing procedures. Behavior that falls outside those
restrictions can damage a network. At the very least, protocols should include a
robustness principle, such as that in IP and TCP, that allows a router to detect and deal
with packets that have obviously been generated by incorrect procedures. Of course, this
presupposes that routers can detect bad packets and handle them in a reasonable manner,
which is not always possible. Ideally, we wish to define routing procedures so that illegal
behavior at any one point cannot greatly damage an entire network (assuming that the
network is topologically well connected). As a practical matter, it may not be possible for
certain classes of routing algorithms to be made fail-safe in this way.

Any router or link can become the source of an invalid control message.
Protection against a link's alteration or replay of contrcl messages can be accomplished
by a combination of point-to-point encryption and time-stamps or sequence numbers.
Preventing a router from generating any invalid control messages requires perfect
software, perfect hardware, and completely tanper-proof routers.

Perfect software is probubly not an achievable objective for any practical
application. There is some question as to whether program verification will ever be able
to prove the correctness of any large software system. Since program verification
presumes the existence of axioms that describe correct behavior, there always remains
the philosophical question: Who verifies the axioms?

Perfect hardware is likewise unachievable. Correct software execution requires
correct computer operation. It is always possible for the execution unit to jump to an
incorrect program address or for memory to fail, due to a transient hardware problem.
These events are not always detectable. This renders moot the question of whether or not
perfect software could be created.

A tamper-proof router is also a practically unachievable objective. For economic
reasons, routers may be placed at relatively insecure locations, for example, inside
customer premises. Routers require servicing, replacement, and probably periodic
software reloading. There will always be people who have access to routers and who
must be trusted. In a commercial environment it is possible for someone with special
knowledge of the router to maliciously attack the network. Recent events indicate it is
prcbable that some one would try to attack a network merely to achieve personal
gratification. In a military application, router sites could be attacked and overrun;
interrupting enemy communications is a common military tactic.

For those reasons, it is wise to design network operating software so that it
becomes much less likely for an attack at any single point to cause widespread network
damage. To achieve this may require fundamental changes in network operating

-31 -

software. For cxample, it may not be possible to design a practical, attack-resistant
shortest-path routing procedure.

4.1 Weakening the Requirement of Reliable Delivery

Much of the theoretical work on routing has concentrated upon shortest-path and
related routing procedures, because they afford maximum nr near-maximum reliability of
delivery. However, shortest-path routing procedures require network-wide propagation
of routing updates to achieve reliability while at the same time preventing loops; and
hierarchic routing, while limiting the spread of updates across cluster boundaries of the
hierarchy, still requires unlimited propagation throughout all levels. Such propagation
may expose a network to partitioning if it is properly attacked.

Choosing Another Class of Routing Procedure

A commercial network can be designed with relatively few, large, centralized
routers. This is the approach used in most telephone systems. Communications channels
are assumed to be reliable, as are the routers. Routing in such a system is largely static.
Routing changes when they occur are infrequent, and in some cases they require physical
intervention. In a military network one must assume that neither communications
channels nor routers are so reliable. Centralized, static routing procedures are not as
desirable in a military communications network as they are in the telephone system.

Early networks were small enough to allow application of true shortest-path
procedures, but network growth will soon force designers to abandon shortest-path
routing and to relax reliability somewhat. If a new routing procedure is chosen,
consideration should be given to procedures that do not require the network-wide
propagation of routing updates, thus limiting the propagation of an invalid update and the
extent of damage that may result.

4.2 Simplifying Routing Software

The complexity of the network operating software has a direct affect on the
number of indirect attacks that can occur. It is an arduous task to list all restrictions that
a suite of operating software either explicitly states or implicitly assumes. The number of
possible indirect attacks is combinatorially related to the number of those restrictions. An
examination of what might happen if any restriction is violated, by itself or in
combination, is required to demonstrate attack resistance. Simplifying network operating
sofiware also diminishes the probability of an undetected programming error.

If the software is simple enough, it can be incorporated into the hardware. This
not only increases the packet processing rate, but can make tampering much more
difficult. Unfortunately, the complexity of the software programs running inside the
routers of most networks, such as the ARPANET and Internet, makes that approach to
tamper resistance impractical.

-32 -

4.3 Link Encryption

A network becomes considerably more resistant to indirect attack when it
enciphers the packets sent over the links between routers. Several classes of indirect
attack can be made on a link. These involve selectively damaging or discarding packets,
masquerading as one end of a connection, or inserting invalid network control messages.
Those forms of attack require a filter either to examine the packets that pass through it,
or to create and insert correctly constructed packets.

Link encryption prevents these attacks. Assume that the encryption algorithm is
good and that the keys used by the routers at either end of a link are kept secret. If only
link-level start/stop packst framing data remains unenciphered, then a filter could not
examine packets for their source address, destination address, or packet contents (which
is necessary if a filter is to selectively discard or damage traffic). Neither could a filter
create packets that would be decipherable to a router at either end of the ink. Therefore,
it could not mimic a host or create network control messages. For additional protection,
the beginning and ending position of a packet withir the frame could be enciphered and
made to vary randomly via padding, thus effectively hiding the size or start position of a
packet. Unused bandwidth on a link could be consumed by ‘junk’ packets that would be
immediately discarded when received. This would make traffic analysis quite difficult
and would further complicate the task of selectively damaging traffic.

4.3 Virtual Circuit vs. Datagram Routing

It is not the purpose of this report to stress the differences between virtual circuit
routing and datagram routing. To achieve attack resistance, one must ensure the validity
and integrity of the routing information exchanged under virtual circuit routing
procedures, just as under datagram routing procedures. Although these two classes are
quite different, the attack-resistant datagram routing procedure developed later in this
report can also be used to create virtual circuit paths.

Virtual circuit routing requires end-to-end path negotiation before a connection is
established and data traffic can begin to flow. Because virtual circuit procedures are
more complex than datagram procedures, one suspects that the task of achieving attack
resistance for a virtual circuit procedure would be more complex. Under virtual circuit
procedures, the strong tendancy to use only a single route at any given time makes it
much easier for an attacker to completely intercept, alter, or block all traffic on any
circuit that passes through it. Thus there is some indication that achieving attack
resistance for virtual circuit procedures may be more difficult. The issue of the attack
resistance of virtual circuit routing procedures will not be discussed in any detail in this
report. It should be the subject of a future study.

4.4 Hop-by-Hop vs. End-to-End Acknowledgment

A network that employs hop-by-hop acknowledgment of packets is somewhat
more resistant to indirect attacks than one that relies upon end-to-end acknowledgment.

- 33 -

o KV, 31

L L P LS A LA LU LW LTIV LS LT LT AT AP LS MO AT LU M AT A T MR et 0 ML A I T Al DR W AR W MR R

Routers in a network that do not employ hop-by-hop acknowledgment determine whether
or not a link is in operating condition through the periodic exchange of ‘ping’ packets with
their neighbors. This may take the form of hop-by-hop acknowledgment of a particular
class of packets, such as routing update packets. An attacker can then identify the class
of packet utilized to assure link operation and allow them to pass, but selectively discard
or damage other classes of traffic. This produces a situation in which a link appears to be
correctly operating when it is not.

Hop-by-hop acknowledgment of all packets prevents the successful application of
this type of attack. Consider an attack made on a link that involves the discarding of
packets. If the router is responsible for retransmission and acknowledgment of all
packets, then any attack that consistently discards or damages any particular packet will
eventually cause the transmitting router to declare the link inoperative and trigger network
rerouting. Without hop-by-hop acknowledgment the point of attack is known only to be
somewhere along the route from source to destination.

Two drawbacks to hop-by-hop acknowledgment are the additional overhead in
both processing time and bandwidth. At some point, as the transmission time along the
link increases, hop-by-hop acknowledgment becomes impractical. Geosynchronous
satellite communications links exhibit round-trip times on the order of one-third second.
In such a case, the massive buffering required to efficiently utilize bandwidth makes
hop-by-hop acknowledgment impractical. An additional objection is that hop-by-hop
acknowledgment is usually implemented because it discards damaged packets and
requests retransmission much more rapidly than end-to-end acknowledgment. While this
would normally be considered a desirable feature, in certain situations, real-time data
that is delivered damaged but promptly is still useful, whereas late but undamaged data is
useless. This problem can be avoided by the addition of a packet header option.

Hop-by-nop acknowledgment does not protect a network from all attacks that
involve the selective discarding of packets. It is designed to detect failed links rather than
failed routers. Just as a router could discard any packets it received while simultaneously
acknowledging them, so could a filter placed on a link. If this form of indirect attack is
consistent, then the evidence for an attack would be a dropped connection and the point
of attack known only to be somewhere along the route from source to destination. If only
one is to be used, then link encryption is preferable as a method for increasing attack
resistance, since it not only avoids the overhead associated with hop-by-hop
acknowledgment but also prevents a filter from successfully acknowledging packets.

4.6 Weakening the Requirement of Flexibility

The requirement of topological flexibility may not be necessay for a commercial
computer network, since in the future it will be possible to replace telephone exchanges
with extremely large and complex packet routers. This is the approach being studied by
various telephony organizations such as AT&T [Turner-86]. Since central exchanges are
rarely added and are almost never removed, the need for topological flexibility in the

- 34 -

network core decreases. Flexibility primarily needs to be retained at the edges of the
network, where customers are connected.

This presupposes that future wide-area commercial networks would be built on top
of the current telephone network. It should come as no surprise that telephone and
telegraph organizations in many countries are the principal supporters of the ISDN
development effort. If development actually proceeds in a less centralized, more
distributed manner, the need for topological flexibility grows. The actual path of
development will depend upon patterns of demand, cost, and the regulatory environment.
An alternative to telephone system physical distribution is now available in many
metropolitan areas via cable-television systems. It is unclear whether or not CATV
systems could eventually provide high-speed two-way communication at commercially
acceptable rates. It is technically possible for CATV systems to provide that service. A
first step in that dircction would band-isolate two-way communication traffic from the
predominantly downstream, broadcast CATV traffic. That would allow relaxing the
CATYV topological restriction from thut of a rooted tree, to a generalized cyclic graph for
those bands carrying two-way traffic.

Because centralization leaves a network vulnerable to physical attack, it is
undesirable for a military network. Furthermore, by its nature the military requires
routing procedures that allow a very high degree of topological flexibility.
Communications must move with personnel; routers would be moved, added, and
removed from differing geographic areas of the network as conditions changed.

4.7 Limiting Attacks that Make Use of Priority or Broadcasting

Networks that allow multicasting (or broadcasting) expose themselves to an attack
that takes the form of excessive transmission of packets that request broadcast or
multicast distribution. When that is allowed, it is sometimes possible for a single router
to generate enough multicast packets to overload the other network routers. This will
happen if the multicast message requires an abnormally large amount of processing on
the part of the receiver; an example is a network-wide routing update distributed via
flooding.

If the set of routers participating in multicast groups is kept small, it becomes
substantially more difficult to overload the network. However, it remains relatively easy
to overload the hosts within a group. For example, each workstation on a LAN that
receives a broadcast message must examine that message to determine whether or not
any action is required of it. Normally, at least two context switches occur within the
receiver’s processor for each broadcast packet received. The denial of service that this
implies, for both network and host populations, suggests that mechanisms be
implemented to limit the possible abuse of broadcasting.

We distinguish broadcast messages generated by routers as a part of network
operation from those generated by hosts. Routers should limit the rate at which hosts

- 35 -

TN LA AT AN PN AU A LM WA MWLM P A WA DA AL WA WL WL VAT WL WAL B MATY WAT A W

originate broadcast messages. If possible, they should also enforce this limit on their
neighbors by discarding any excessive broadcast traffic they might receive.

Depending upon the particular routing procedure, it may not te possible to apply
this restriction to broadcast messages- that are generated by routers. For example, in the
ARPANET procedure, updates that arrive at a router must be quickly redistriouted by
flooding. The short-term arrival rate of routing upda'es is statistically distributed and
essentially uncontrollable; it is illegal to queue them to ‘smooth’ the rate at which they are
redistributed, and also iliegal to discard a valid update without first reforwarding it.
However, there is a maximum rate that governs the generation of new updates by any
single router. If an immediate neighbor notices that the rate is being exceeded, action
could be taken to limit the distribution of the offending router's updates.

4.8 Segregating Networks by Trust

It has been observed that the short-haul and local-area portions of networks are
less stable than the long-haul portions. As a rule of thumb, additions and modifications
to internetwork topologies occur much more often on LANs and LAN clusters than on
portions of the internetwork that terminate long-haul communication links. Long-haul
links can be presumed to be stable for the following reasons:

They are relatively expensive.

Adding a link or modifying its physical routing requires a great deal
of lead time.

They are essential to the total operation of the network.

Administrative benefits are gained by using stable hardware and well-debugged
code to operate the long-haul portions of an internetwork. At the ‘edges’ of the
internetwork one observes greater variability in hardware and software. In this situation
the long-haul, ‘central’ portion of the internetwork is more trustworthy than the edge
portion. This suggests that some attack resistance could be gained by placing a logical
firewall between the center and the edges of a large internetwork. The Internet is now in
the process of doing this.

Planned Internet Modifications
As the Internet has grown, a number of routing problems have arisen:

Overhead grows too fast. This includes growth in routing table size,
update processing time, the number of update messages, and network
bandwidth consumed by update messages. All of these grow
approximately linearly with the number of routers.

The proliferation of dissimilar physical gateways, sometimes with
insufficiently tested routing software, has led to difficulties such as

-36 -

routing loops. The rapid, network-wide distribution of routing data
has made fault isolation difficult.

The Internet gateway routing software itself is complex. It is
extremely difficult for network administrators to distribute changes to

the various types of gateways and to see that they are installed
correctly.

Researchers have proposed a three-leve! routing hierarchy that attempts to address
these problems. At the center of the Internet remain the core gateways, which still run the
Internet routing procedure, or soon a variant of the ARPANET's SPF procedure. They
constitute a smaller manageable tier, which is responsible for long-haul network
communication. At the edges, where local area networks are connected and where most
of the growth occurs, are located the exterior gateways. These run an Interior Gateway
Protocol (IGP). Several IGP's may exist, each perhaps with its own routing procedures.

- IGPs exchange routing data with one another and the core gateways via an Exterior

Gateway Protocol (EGP) [Rosen-82][Seamonson-84] [Mills-84].

Figure S.

Gateway

Internet
Core

The EGP restricts the network topological model to a tree that is rooted to the
Internet core system (see Figure S). In theory this prevents the newer, more diverse
population of routers from causing routing loops that might affect the entire Internet. An
errant gateway can affect only those routers in the same rooted branch as itself. The core
is highly trusted and runs a shortest-path routing procedure that allows a more general
topology. Unfortunately, nothing in this proposed hierarchy prevents LANs in separate
branches from installing a gateway between th.selves and so violating the model. This
could result in routing loops.

The topological restrictions inherent in a tree will eventually become bothersome.
Further divisions are proposed that would aggregate like gateways into autonomous systems
[Mills-86]. The gateways in an autonomous system must be able to reach one another via
paths that do not leave that system. The routing topology within an autonomous system is
not restricted to a tree. One or more autonomous systems that trust one another and
share a common security model can be further grouped into an autonomous confederation.

-37-

eV AT PR T WS Sen y : ALY, i P v
VY Y AP L Ry IR A S AT Rt © M Bt T A AU A Y S A A R PRI AN AN R AR A R AN Y TN BW R UAY AU AL AL A MARIT U W AW LT LS W S e e

As before, gateways in an autonomous confederation must all be able to reach one
another without leaving that confederation. The core system would then be just one more
autonomous confederation. From the perspective of the ANSI/ISO routing proposal
mentioned earlier, one could view autonomous systems as similar to Domains, and
autonomous confederations as Dominions.

4.9 The Use of Authentication Servers

The possibility of spoofing or replay attacks involving routing messages has
recently become a subject for discussion in the literature. How does a recipient of routing
information know both that it was generated by an authorized source and that the
information has not been modified en route? By using a trusted third party as an
authentication server, it is possible both to authenticate the source and to provide data
integrity of messages sent by the source to specific destinations. However, authentication
servers do not validate the data placed into messages, so the possibility remains that
invalid data can be sent without detection.

One proposal suggests using an authentication server to restrict participation in the
EGP protocol to only those gateways known to be participants in the protocol, thus
ensuring the integrity of data exchanges between them [Mills-87]. Two authorized
EGP-gateways that desire to exchange routing data would first obtain a session key,
which they would then use to encrypt the checksum and sequence numbers of the update
messages they exchange. Gateways would be able to determine whether or not an update
packet had been altered while en route between them. They could also detect false EGP
messages sent by some other host or gateway masquerading as an EGP-gateway.

An authentication server is a trusted network resource that contains passwords for
each authorized user of a particular service. If greater network reliability is to result from
their use, authentication servers must be more reliable and secure from attack than the
average network host. Networks should be subdivided into fully overlapping service
regions, each with its own primary authentication server. This aliows each network router
to consult at least two authentication servers. If a primary becomes inoperative or
unreachable, then a back up will allow operations to continue in the affected region.
Furthermore, in a large network, servers would only be required to store passwords for
hosts in their service region. This solves a problem of scaling and limits the number of
hosts compromised if a server’s password file is siezed.

The increasing use of servers in networks for performing vital tasks, such as
name-to-address mapping, was discussed earlier. These information servers differ from
an authentication server, since they respond directly to requests rather than acting as a
mutually trusted third party. However, the data they return to the requestor must be
protected from modification while en route. This implies the use of a password file. The
authentication servers are logical candidates for the location of these other services, since
they already contain the needed password file. Additionally, these other services would
share the greater physical security that presumably surrounds the authentication servers.

- 38 -

TammeTR T TR R e

Since a server’s data is not validated, access to its database must be carefuily controlled
and the data in it carefully examined before modification.

4.10 Developing Multiple Simultaneous Paths to a Destination

One requirement of shortest-path procedures, and also of virtual circuit
procedures, is that a router can use only one path to a particular destination at a time.
There always reémains the possibility of a malicious router’s intercepting, discarding, or
altering the traffic that passes through it. If simultaneous multiple paths are maintained
by a router to each destination, then, by a combination of random path selection and
end-to-end retransmission, the probability of a connection being severed by any single
indirect attack can be diminished. A routing procedure that allows the simultaneous use
of multiple paths is inherently more attack-resistant than one that does not. The
Cartesian procedure has this characteristic and thersfore has a distinct attack-resistant
advantage.

-39 -

5 Basic Requirements for the Aitack Resistant
' Exchange of Routing Information

Some degree of attack resistance can be added to routing procedu:es through the
use of point-to-point link encryption, but ideally a much stronger resistance to attack is
desired. Procedures are required that:

detect network control messages containing damaging and invalid
data, and prevent or correct the damage ihat might occur from their
distribution.

incorporate no software behavioral restrictions that, if violated by a
single router or host, could greatly damage an entire network.

satisfy the routing requirements of reliability, flexibility, and
efficiency.

Any router has control over the composition of messages that pass through it or
that it constructs. Any message can contain invalid data, placed there either by the
source or by any intermediary between the source and the recipient of the message. To
determine whether or not a routing update message is pctentially damaging, it must be
possible for the recipient to detect invalid data of sufficient severity, or to know that some
other authority validated the message and that no intermediary between the source and
the recipient modified that message.

For the recipient to detect all invalid, damaging data requires that it be omniscient.
For example, for a recipient to determine that a topological update (claiming to have a
low-delay path to some other network router) is erroneous requires the recipient 1o know
about the network topology of the region mentioned in the upa:‘e. If updates are
distributed throughout the network, then each router must possess knowledge of the entire
network topology. This is impractical for large-scale networks.

5.1 Detecting Modification of Routing Messages

Preventing a message from being modified undetectably by an intermediary is
usually accomplished via encryption. Sensitive data is enciphered at the source with a key
that is known only by the intended recipient. Only the source can undetectably modify the
message, and only the intended recipient can correctly decipher the message’s data.
However, applying encryption to routing update messages can alsc lead to problems. To
prevent undetected modification by intermediary routers, encyption keys must be unique
for each [scurce,destination] router pair. For N hosts, this implies the necessity of O(N?)
unique keys, since each router would need to store N-1 keys. Whenever a router is added
or removed, every router must be modified. Unless a network is small, it is not practical
to protect network control messages by this static storage of keys.

Two solutions to the static storage of keys generate them dynamically upon
request. Assume that a regional authentication server AS exists, that it possesses private

keys for each router in its region, that both routers A and B are within that region, and
that A wishes to send an update r to B. A builds a message in which it identifies itself,
and encrypts both the address of the destination B and the data r using its private key. It
then transmits this to AS, which decrypts the message using A's private key. AS then
extracts the destination B and builds a message encrypting r using B's private key. AS
then transmits that message to B along with a time-stamp that contains the time when AS
received A’s message.

A—AS: A {B,r }KA
KB
AS—B: AS, {r,t}

A modification to that approach uses AS as trusted third party to generate a
session key Ks used by A to communicate with B [Needham-78]. A sends a message to
the authentication server AS that identifies itself and the destination B, and contains a
once-oniy transaction identifier I, which is used to prevent replay of any previous
response from AS.

ATrAS: A B I,
, KB KA
as—+a: {1,B Kg {Kg A ¢t})

KB K

In both approaches the possibility of spoofing must be curtailed. A relatively
inexpensive way to manage this threat is to have the source include a time-stamp value ¢
as part of the data it returns. If network clocks are roughly synchronized, this time-stamp
can be used to prevent replays where the difference between the destination’s clock and
the time-stamp is greater than some limit a+At (where At is the maximum allowed
synchronization error).

From the standpoint of validation, the first approach to static storage requires that
r be validated by AS and B, while the second requires that it be validated by B and any
intermediaries on the path from A to B. Under each approach, only the authentication
server needs to know the keys. However, both approaches have drawbacks that could
prevent their use in large networks. Use of an authentication server slows the propagation
of control messages, since it requires a round trip to and from AS before a control
message can be sent. The amount of added delay depends upon the distance between
each router and its nearby authentication server. A less serious problem is that a new
router could not be added until the appropriate authentication servers were notified of its
existence.

The delay problem is exacerbated if flooding is used as the mechanism to
distribute update messages. An O(N) computation cost arises then, since flooding must
now be replaced by serial, repeated transmission. This greatly extends the period
between the time an update is transmitted to the first recipient and the time it is received

- 41 -

by the last recipient, and may in fact make this type of encryption impractical for use by
routing procedures that rely upon a limited maximum update reception time.

It appears " .at the use of an authentication server can be avoided by using the
signature authentication procedure available through public-key encryption [Rivest-78].
In a public-key system, each router A publicly discloses un encryption procedure Ea. It
keeps private an associated procedure DA. If you wish to transmit a secure message M to
A, you first encrypt it with A’s public key, producing EA(M). Upon reception, A decrypts
using its private procedure DA(EA(M))=M, resulting in the original message M. If
signatures are allowed, then procedures DA and EA permute. If A wishes to transmit a
secure message to B (and if it is important that B knows it in fact came from A) then A
uses the following procedure. It encrypts the mes..ge using its private procedure,
producing DA(M). This is transmitted to B, which decrypts using A's public procedure
EA(DA(M))=M, reproducing M.

If a public-key system is used, then N? unique keys are no longer required, but the
other drawbacks remain. Potentially, each router must be able to access a public key for
all other routers in the network. If N is large, it is impractical to require routers
themselves to store the keys. Authentication servers would be required to reliably store
and distribute them. As before, if a message is distributed to all routers, an O(N)
computation cost -rises, since D;(M) is a unique computation for all routers i.

51.1 Simultaneous Requirements of Validation and Data Integrity

Traditional end-to-end encryption techniques solve the problems of data exposure
and data modification. This is sufficient to protect messages against modification by an
intermediary. However, any message may contain invalid data inserted at the source.
That situation must also be detected. In the case of routing updates, any update
containing damaging data should be detected and removed before damage is done to ihe
network. This requires that some outside authority examine the message and validate its
contents. If a router builds an update, that update must be validated either before or
upon arrival at its destination.

There are two approaches to the problem of validation:

1. Use a regional authority such as an authentication server to validate a
message.

2. Use routers, other than the one that built the message, to validate the
pieces of the message about which they possess knowledge, as the
message travels to its recipient.

vhe first approach places complete trust in the hands of some few regional
authorities. All data necessary for validation is stored there. Since validation is
performed before the n:sssage is sent to its recipient, there is no requirement that the
update data be readable by any intermediary. The second approach appears considerably
more complex.

- 42 -

A AT W AT TR W A MALAT ST RO R AT A R AU AT NN 2 WO I AR I KU A DO Y U AN m“muﬂm‘j

Under the second approach, necessary validation data is assumed to be distributed
piecemeal throughout the network. It is not clear that this is either possible or practical.
Any router that performs validation must be able to read the message, implying either
that it can decipher the message or that the data is in the clear. But if the data in the
message is ever entirely in the clear, then the validator con alter it undetectably. If only
the destination performs the validation, this implies that all routers possess the necessary
data to perform a validation. When validating a routing update under these constraints,
reliability and topological flexibility become impractical for all but small networks. A
mechanism is required that allows control message data to remain in plain-text while
detecting any modification of that data.

A data checksum is the usual mechanism employed to detect data alteration during
transit or stcrage. However, each router presumably knows the network’s data checksum
algorithm and can generate the correct checksum value from any data field. Therefore,
any intermediary router can undetectably alter message data if the only way to detect such
modification is the checksum.

A possible solution would be to create a second checksum by duplicating and
enciphering the data checksum with a session key. The resulting integrity-check value
would be similar to a data checksum, except that intermediaries would not possess the
[source, destination] encryption key used to encipher it. The destination would receive
the message data, calculate a checksum value based on that data, decipher the
integrity-check to derive the original checksum value, and compare the two. If an
intermediary had altered the message data, would those two values match?

Network checksum algorithms are many-to-one valued functions. Many
modifications of the checksummed data are possibie that result in the same checksum
value. Checksum algorithms are designed to detect stochastic modification of data. An
implicit assumption is that the data has not been attacked in an intelligent, planned
manner. For example, the Internet IP/UDP checksum algorithm is able to detect
stochastic data modificatior. but a simple swapping of any two aligned 16-bit words of
checksummed data results in the same checksum value. Other checksum algorithms are
beiter in the sense that it is more difficult to generate identical checksum values from a
reordering of the input data. It nevertheless remains the case that if an intermediary can
compute the checksum value, then any many-to-one checksum algorithm allows that
intermediary to indetectably alter the data.

For the source to simultaneously provide the data in both clear and euciphered
forms largely solves this problem. Virtually all modifications to the clear data by an
intermediary would be detectable. The destination would use the session key to decipher
the enciphered copy and compare it against the clear copy provided by the source. This
technique in effect creates an additional checksum value of equal size to the data. The
mapping between checksummed data and this checksum value is now one-to-one instead
of many-to-one valued. The original checksum can still be used by intermediaries to
detect data errors during transit.

- 43 -

- AL AT A AT R SR TN T MR AN AT A AT R N R W TSR AW T WA MACA N ASTAIY A A SR AT R IR A R TN B A BuAl et S St s

This additional protection is gained at the expense of bandwidth and processing
time. Duplicate data is transmitted, and the destination must decipher and compare data
copies. Still, the effect of the additional bandwidth should be small, since control
messages are infrequent relative to user data messages under normal operating conditions
in a well-used network.

5.2 Validation of Source Routes

In a large network it is impractical for any single authority to store a complete
topological map that would allow it to validate all routing information exchanges. To be
practical, validation information should be distributed among regional authorities. One
way to make validation practical is to restrict the distribution of any particular routing
update to a restricted population of routers, so that regional authorities may perform
validation. Another way is to create a mechanism that allows piecemeal validation of an
update as it proceeds toward its destination. These restrictions are met by a routing
procedure that transmits routing information from one router to another in sourze route
segments.

Let the neighbors within one hop of router { be represented by the set
Ni; = {r | r is directly connected to i}. Assume that a router communicates information
concerning connections to its immediate neighbors. In Figure 6a, x sends such an update
to its neighbor w, claiming that x is connected to v. Without an outside source of
information, w has no way of determining the validity of x’s assertion; v may or may not
te a member of Nix, or v itself may not exist. This fundamental weakness allows attacks
that produce partitioning.

Let Nzu = {Ny; | iis directly connected to u} be a set containing, for each of
router u's ne’ oors, the set of their neighbors. Assume that sets Nz, are correct and
that each router u possesses this set. In Figure 6b, let N1x = {w, y, and z} and assume
that x falsely claims in an update that it has a link to v. Since w possesses in Nzw a
validated Nix, w can immediately determine that x's claim is invalid.

Figure 6a. Figure 6b.
o Z

W "’ " 'y
X PN L L]
 essnsaes e’ v

w ./&

Consider a source route {xj, X2, ... , Xn-1, Xn} communicated by x5-1 to x1. By
induction, the entire sc =~ route can be validated hop by hop as the packet containing
the source route pro.’ ..es toward x;. Each router x;, i=1, ..., n-2 can verify the

addresses claimed and can also verify the existence of links from itself to x;4+1 and thence
to x;+2. This form of source-route validation docs not require the use of an outside

validation authority, but it does assume that a source route is not modified during transit
through the various routers x;. To provide data integrity it will still be necessary to obtain
unique [source, destination] keys for x; and xa-; from an authentication server, so that an
enciphered copy of the source route is also available for comparison by x;.

This neighbor validation mechanism allows a router to detect a fabricated
communications link or router. One drawback is that it provides no information
concerning the characteristics of any link, or any de.ays associated with it. Another is
that neighbor validation restricts topological flexibility. It is assumed above that the
databases associated with Nz, are correct. This implies that a link could not be added to
the network without the neighbors of the routers at either end of the new link first being
informed of the additon by some trusted outside administrative authority. If a link is
removed, neighbors at either end must likewise be informed. This mechanism makes
maintenance activity somewhat more difficult. If validation is performed instead by a
regional validation authority, much the same restriction applies; the regional authorities
must be informed prior to any semi-permanent topological change.

5.2.1 Applicability of Neighbor Validation

Can the technique just described be applied to commonly used routing procedures?
In the distribution of routing updates, the minimum information distributed is address and
topology. (This is what the current Internet procedure distributes.) However, under that
procedure a router distributes topology information for sites other than its immediate
neighbors. Thus it is unsuitable for the application of neighbor validation. The same
seems true for the hierarchic procedures.

Under the ARPANET procedure, a router limits the information it distributes to the
address and delay data of its immediate neighbors. Unfortunately, the routing procedure
distributes it across the entire network via flooding. To ensure integrity of the data via
secret [source, destination] keys requires an increase in overhead and distribution delay
proportional to the number of routers in the network. It is not practical tc apply neighbor
validation to the ARPANET procedure.

The Cartesian routing procedure constructs source routes. An initiating router
requests a route that is constructed hop-by-hop between itself and some terminating
router. Each source route can be validated using neighbor validation. Each source route
is sent from its terminating router back to its initiator using the source route in reverse. It
is possible to simultaneously appiy neighbor validation and to ensure integrity of the data
via secret [source, destination] keys without an increase in delay proportional to network
size.

522 Distribution of Authentication Servers, Their Storage
Requirements, and Overhead

The use of regional authentication servers has been postulated to ensure the
integrity of transmitted routing information. Each server is required to store the private

- 45 -

keys of the routers in its region. It is assumed that the network administration ensures
that a sufficient level of physical security surrounds each authentication server. How
must these servers be distributed throughout a network and how much storage do they
require?

Assume that no source route will ever exceed a length of 1. Consider a source
route {xi, x2, ... , Xn-1, X5}, and assume that x,-1 requests its regional authentication
server AS to validate that route. If AS alone is to provide the private keys of both routers,
then x; and x5-1 must be known to AS. If authentication servers are distributed so that no
router is farther than m hops from the nearest server, then each server must store keys
for those routers within (1+m-2) hops of its location, since x,-; cannot be more than m
hops from AS, and x; caniiot be more than (1-2) hops from xn-1.

Assume that the network has a grid topology with routers equivalently spaced
along both axes. The address and private key storage requirernents for an authentication
server are equivalent to the number of routers within (l+m) hops of the server, or

0(2(1+m)?2).

2 (1+m)?
(1+m) 10 200
20 800
40 3200
80} 12800
160} 51200
320] 204800

As the table demonstrates, storage requirements increase slowly enough that a
single authentication server could easily store the passwords nf all the routers within 320
hops distance. However, the administrative overhead to maintain the table for some
205,000 routers would probably make table maintenance impractical, since each private
key change or addition/removal of a router within the sender’s 320-hop region requires a
change to the tabie. If the regional network admunistrator can securely update each
authentication server’s tables remotely, then the overhead associated with key changes
and the addition/removal of routers should be manageable for servers that cover
substantial regions.

It is unlikely that source routes of length 1=20 would be used even under very
adverse circumstances. For example, if one were to use Cartesian routing in the
ARPANET, a flooding limit no larger than f=4 is required under normal circumstances,
which implies a lower operating bound of l=6 [Finn-87]. If a network were to use
piecewise source routing, the network’s administrator would almost certainly alter basic
network tcpology so that long source routes would not be needed under typical conditions.

- 46 -

i

More important will be the service rate that must be maintained in order to provide
timely response to requests for session keys, to validate data, and to transmit its
responses. A delaying factor is the number of intermediary routers that lie between the
requestor and the server. A balance must be struck between these two sources of
overhead and the cost of additional servers. It would also be necessary to provide at least
a single level of server redundancy to retain attack-resistant characteristics.

523 Subdividing the Authentication Task

Is there a practical way to share validation information for source routes of
extreme length among a group of validation authorities? If each authentication server
maintains source routes to neighboring servers and knows their private keys, then it is
possible to validute a source route hop by hop. This would allow long source routes to be
validated, but it would take longer to do so.

Assume that authentication servers are distributed so that at least one server is
within m hops of any router, and that the servers know the keys of all routers within m
hops of their location. Assume also that each server maintains source routes to its
neighboring servers within a radius of at least 2m hops. An authentication server AS
receives a request for private keys for routers x; and x3 associated with & valid source
route {xi, X2, X3}.

Router x2 is within m hops of AS, which'contains x2’s address and privite key.
But since x; can be m+1 hops diitant, AS may not know x;'s private key. If x; exists and
AS does not know its key, then some neighboring authentication server must contain that
information. For each of its neighboring servers, AS builds a packet that requests the
private key for x;. It then enciphers the packet with each neighbor’s private key and
transmits these packets to them using the source routes it maintains.

AS A8 AS, {x,}7AS"
| 4
AS' = AS: AS, {xl' le } AS

Each authentication server that receives such a packet decrypts it using its private
key. If the neighboring server does not contain information concerning x, it discards the
packet. If it does contain the requested information, it builds a reply packet that contains
x1's private key, enciphers the packet with AS’s private key, and transmits the packet back
to AS. This procedure allows AS to complete its task.

Assume now that servers are regularly spaced across the network with m hops
between them. Now consider a longer valid source route {xi, X2, ... , Xa-1, Xn}. Since
Xn-1 is within m hops of some server AS, then as long as m+2 > n, x1 must be within m
hops of AS or one of AS’s neighboring servers. The above search procedure now finds
keys for any x; ihat is part of a valid source route {x1, X2, ... , Xn-1, Xn}, Where m+2 >n.

The search procedure can be generalized to search for the requested information in
authentication servers even farther away, for longer valid source routes, via a procedure

- 47 -

similar to limited flooding enquiry. This allows the storage requirements for an
authentication server to be reduced from O(2(1+m)2) to O(2m2). Considerable additional
overhead and time is required to validate long source routes.

6 Reducing Vulnerability in Cartesian Routing

The Cartesian routing procedure can be modified to employ both neighbor
validation and data integrity. In the following sections the reader is assumed to be
familiar with the basic operation of the Cartesian routing procedure [Finn-87].

Three classes of source routes are necessary to the operation of a Cartesian
network; and they are:

(1) Sourcc routes to at least two regional authentication servers.

(2) Source routes to at least two regional routers that reside in level j+1
in an m-level Cartesian network, for routers residing in an uppermost
level j, j=0, ... , m-2.

(3) Source routes obtained after initialization and returned as the result
of a limited flooding operation.

These routes must be constructed as part of router initialization. The addresses of the
regional authentication servers and of the higher level routers, mentioned in classes one
and two, are distributed by a network administrative authority in a secure manner to all
concerned routers. These address assignments are relatively permanent. The sets Na;
are similarly distributed. Each router is assumed to have received all of this information
prior to its initialization. Each router is assumed to keep a unique, private key, known
only to itself and regional to authentication servers; the authentication servers themselves
are assumed to be secure.

During initialization each router must obtain source routes to its regional
authentication servers. If the router is part of a multi-level Cartesian network, it must
also obtain source routes to regional routers in the network level immediately above it.
These source routes are determined by a variant of the limited flooding procedure, in
which the progress limit field is set to zero. This ensures that no valid flooding rcsponse
can arrive from any address other than the specific address requested. Responses that do
arrive contain source routes to the requested authentication server or higher level router.
The validation and integrity mechanisms are discussed in detaii below.

6.1 Achieving Attack Resistance when Using Neighbor Validation

In a single-level Cartesian network a router chooses the next-hop destination for a
packet in essentially one of three ways:

(1) An immediate neighbor is chosen that is closer to the packet’s
destination.

(2) The router’s database contains a source route segment that terminates
closer to the destination. This new source route segment will
determine the next hop.

(3) A limited flooding enquiry attempts to find routers within f+1 hops
that are closer to the destination. If successful, the reply is a source

— 49 -

route that allows step (2) to be applied. If no reply is received, the
destination may be assumed to be unreachable.

Every router knows about the existence and status of its immediate neighbors. It is
desirable to validate all source routes when they are initially constructed, since these
constitute the remainder of the paths used.

In section 3.2.2 of this report it was shown that an attack made by a single router
on the flooding procedure during distribution of an enquiry nas a minor effect. Because
of the nature of flooding, some flooding enquiry packet will probably arrive at a router
that can build and transmit a valid response. For the same reason, valid responses return
to the initiator over a variety of paths. Unless the attacking router is on a critical path or
there can be no valid responses, it is highly likely that a valid response will arrive at the
initiator.

Assume that router x; requires a source route that makes progress toward location
d (is closer to d than x;), that it initiates a limited flooding enquiry, and that it receives
{x1, X2, ... , Xn-1, Xn | d} as a flooding response. The response claims that the router at
location x, makes progress and provides a source route to it. Ideally, it should be
impossible for any false information in a flooding response to reach the initiator of the
flooding enquiry and to be believed. Although this is not feasible, it is possible to make
the procedure attack resistant.

False information can be supplied to x; by the router that constructs the response,
in this case xp-1; by any router {xz, ... , xn-3} along the return path; or by any link along
the route. Without additions to the network to improve security, there are some things x;
can do for itself. The truth of the claim that x, makes progress toward d can be
immediately determined by x;. However, x; may receive responses that seem to make
progress, but that are false.

A response provides a source route to the initiator. If we assume that any data in
the response may be false, then any of the routers mentioned in the route
{x1, X2, ... , Xn-1, Xp} May not exist, or the connections x;+x;+1 between them may not
exist. The initiator x; cannot by itself validate the entire source route. Router x; does
have knowledge of its immediate neighbors, so it can deterrine if it is connected to x2;
but cannot know whether the remainder {x3, ... , Xa-1, Xn} constitutes a valid path.

Assume that during a flooding reply each router {x; | i=1, ... , n-2} determines
that {xi+1. X;i+2} exist. Assume also that {x; | i=2, ... , n-1} make the same determination
for x;-1. If the conditions are not met, the source route is bad and the reply cannot be
forwarded to x;, and it is discarded. However, x; could modify any porticn of the source
route {Xi+2, ... , Xn} and this would not be detected by x;.1. Preventing modification
requires that the integrity of the data in any flooding reply must be ensured.

6.1.1 Providing Data Integrity for Flooding Replies

Data integrity car. be provided, but it requires unique [source, destination] keys. It
is not practical, nor is it wise for a router to store all the keys it might possibly need.

- 50 -

~ S
T

R ¢ SRS TN ST * I AL N

(AAA0ANAOANNMNAL YA ENOIOEOUNDGOY

However, it is exceedingly unlikely that any single router would require even a small
fraction of those keys. For practical network topologies, Cartesian routing limits the
number of source routes that a router uses to a small integer, but just which source routes
are needed is determined dynamically. This suggests that unique [source, destination]
keys could be created with the aid of distributed authentication servers.

Assume that router x,.1 is responding positively to a flooding enquiry from x;.
Router xp-; wishes to send a response to x; and to preserve the data integrity of its
response. Following Needham and Schroeder’s model [Needham-78], x.-1 receives from
a nearby authentication server, AS, a session key Kgs that it can use when sending its
flooding response to xj, and a time-stamp ¢.

X, TTAS: Xp-1s Xq» IA] -
Kx n-1
As_'xn_l: {IAl,xn_I.Ks.{Ks. xn-l't} 1 }
K
.xn_l—rxl: {Ks,xn_ltt}le' {r}v {r} §

Router xn-1 sends a respcnse to x; containing three fields: (1) a field, encrypted by AS
using x1’s key, which contains the session key Ks, xa-1's address, and the time-stamp ¢
returned by AS; (2) the response r in plain text; and (3) the response r encrypted by xn-1
using Ks. Fields (2) and (3) allow x; to determine whether or not r has been altered en
route. If xj,-; does not receive a response from an authentication server within a

reasonable time, it does not respond to x; and attempts to find another active
authentication server.

Note that both the plain text and enciphered versions of r are provided. This
allows a known plain text attack to determine the session key. However, exposure of the
session key provides little if any immediate advantage to an attacker. First, the session
key is not used to hide any information, but only to provide an integrity check on the plain
text. Second, a set of new session keys is generated for each individual flooding request.
Finally, the initiator of a flooding request associates a timer with each request. If that
timer expires, all remaining responses to that request are discarded. However, if Ks
becomes exposed, one portion of field (1) enciphered with xi’s private key becomes
known. It is still impoitant that the encryption algorithm make a known plain text attack
difficult.

In response to a limited flooding request, the message

(Kgrxpyr 01 5%, 0r), {r) 58

is sent toward x; along the source route r, represented by {xi, X2, ... , Xa-1, Xa | d}, in
which each of the x; are unique. The following steps occur before any reply to a limited
flooding request is accepted.

(1) Consider {x; | i=2, ... , n-2}. By using neighbor-validity, x; can
determine whether x4 2 is in fact a neighbor of x;+1, and that x;-4

@

©)

@

©)

(6)

()

One of the two principal drawbacks to neighbor validation was that the sets N2;
contained no information concerning the quality of any of the links in a source route. The
sets can only be used to validate topology. However, properties (1) and (2) ensure that
the message containing the source route must itself use that route. Although the quality
of the individual links along the source route is unknown, the fact that x; accepts a source
route implies that the route {x1, X2, ... , Xa-1} was functioning within age-limit a.

is a neighbor. If it is not, the reply message is discarded; otherwise
it is forwarded to x;-;. By induction on i, intermediaries validate the
entire source route r before it reaches x;.

Each router {2; | i=2, ... , n-1} examines the sourct route to ensure
that all routers in it appear only once. If that check fails, the
message is discarded. Each router x; must receive the message
containing the source route over the link from x;«x41. If it has
not, the message is discarded.

Source routes of the form {x1, X2, ... , Xn-1, Xn, Xn+1, .. , Xn+k | 4}
pass the above validation procedure, but Xn+1, Xnsx may be
fabricated. However, the definition of limited flooding restricts valid
source routes to be of the form {xi, x2, ... , Xn-1, Xa | d}. One of
the fields communicated by AS to xn-1, included in the packet
containing the source route, is {Ks, Xn-1, t}, and it is encrypted using
x1's private key. Upon receipt x; decrypts that field, yielding K3,
Xn-1, and t. By inspection, x; can then determine whether or not the
received source route is of the correct form. If it is not, the rnessage
is discarded. :

Router x; decrypts the enciphered copy of r using Ks. It compares
the deciphered and clear copies of r. If they do not match
identically, the message is discarded.

In conjunction with ¢, the current time T; at x;, a maximum age limit
a, and synchronization error At, x; discards replies that arrive when
a<g(Ty-1).

Router x; maintains a table containing destinations d, and matching
progress limits p, for which it has requested flooding replies. It
discards these entries after an amount of time > a has elapsed. Any
reply it receives containing a source route {xi, X2, ... , Xn-1, Xn | d}
for which d does not match one of the d, is discarded.

From the definition of limited flooding, we assume that router xn-1
determined that its immediate neighbor x, made progress toward d.
This is verified by x1 when it compares the location of xn against the
matching d, and progress limit p,. If progress was not made, the
message is discarded.

This demonstrates that the only flooding replies accepted by a router x; are those that it
has requested, that are valid, and that are rio older than the age-limit a.

-52 =

23

Providing false information during the flooding enquiry procedure does not create
a damaging avenue for attack. If the source address, destination address, or progress
limit fields have been altered during the flooding enquiry, this can be detected by the
initiating router x; when the response arrives. Assume that some router lies during the
flooding enquiry and that the initial portion of the source route {xi, X2, ... , Xn-2} is false
when it arrives at xn-1. Since that same route is validated upon return to x;, either a valid

* source route is returned to xj, or the invalid route will be detected and the response

discarded.

The techniques developed here cannot be generalized to guard the routing data
against two or more simultaneous attacks. If collusion between two routers is ailowed, a
source route of length greater than two hops cannot be validated using the sets Na;. If
Xn-1 divulges the session key K to any router {x2, x3, ... , Xn-2} along the source route,
then invalid source routes can be presented to x; that cannot be detected. '

6.2 Achieving Attack Resistance using a Validation Authority

A regional authority must possess the sets Nj; or the equivalent for each router
i=1, ... , n=1 in the source route {xi1, X2, ... , Xn-1, Xn} if it is to validate the addresses
and topology along that route. The simultaneous requirement of data integrity requires
the use of encryption. It seems natural to combine both validation and key distribution
functions within an authentication server. Each authentication server would contain the
topology, addresses, and private keys of the routers i in its region.

Xpg TAS: Xpg. {xg, ’}Kxn-l

K
AS—+x.: A8, {r,t} 1

Assume that router xn-; is responding positively to a flooding enquitry from xi.
Router x,-1 wishes to send a response to x; and to preserve the data integrity of its
response. AS validates the addresses and topology along the source route contained in the
response. This corresponds to steps (1) and (2) discussed in the previous section. AS
then extracts the address x; of the router that initiated the flooding response and
constructs a reply, which contains the initial flooding response r and a time-stamp ¢. The
reply is then enciphered with x;'s private key and sent by AS to x.

Upon receipt x; applies steps (3), (5), (6), and (7). At the conclusion of these
procedures x; can make the same claim made in the previous section. Note that the
response from AS would usually travel directly toward x; and not to x,-1 and then back to
x1 via the reverse source route, as it did under the neighbor-validation scheme above.
Router x; cannot infer that the source route was recently functioning, as it can under
neighbor validation. However, since the authentication servers are assumed to be both
reliable and secure, the integrity of any validated flooding response that arrives at x; is
assured. The only attacks that can be made upon the routing data are by xn-1 itself or by
some router along the source route occur before the route is validated.

- 53 -

T Sl i A Pl T e S A P N P AL ek unun-mn--g

An obvious drawback of using an authentication server both to store private keys
and to validate the source route is that the authentication server itself becomes a potential
weak point. A break in the security surrounding an authentication server allows an
attacker to freely lie about routes. Under neighbor validation the authentication server
only supplies keys and never sees the source route itself. However, Cartesian routers
accept routing updates only in response to requests that they themselves have recently
made. This characteristic limits the effect that a malicious server can have on the
network in its vicinity.

It was shown earlier how rapidly the required storage within an authentication
server grows with the maximum allowed length 1 of a source route. This problem
becomes more severe when the sets Ni; or their equivalent must be stored. It is possible
to subdivide the validation of source routes of length greater than 1 in a manner similar to
that used under neighbor validation.

Assume that an authentication server AS is asked to validate a source route
{x1, X2, ... , Xn-1, Xn} Of length greater than 1. By itself it can validate the last portion of
that route {Xm, ... , Xn}, but it does not possess sufficient knowledge to validate the
remainder of the route {xi, X2, ... , Xm}. For each of its neighboring servers, AS builds a
packet that requests the validation of the remainder of the route. It then enciphers tiie
packet with each neighbor’s private key and transmits these packets to them using the
source routes it maintains.

AS ~AS": AS, {X;, o , Xy }AS
K
AS'—+ AS: AS, {X: Ky }7AS

Each authentication server that receives such a packet decrypts it using its private
key. If the neighboring server does not contain information concerning the route segment
{x1, X2, ... , Xm} it discards the packet. If it does contain the requested information it
builds a reply packet enciphered with AS’s private key that contains x;’s private key, and
transmits this back to AS. This allows AS to complete its task. Within limits, this
procedure can be generalized to validate longer source routes. Each server would validate
that portion of the source route that it could, and would then forward a request to validate
the remainder to its neighboring servers. If the route could be entirely validated, a
response would eventually return to AS via those servers involved in the validation of
some portion of the route. However, considerable additional overhead and time is
required.

6.3 Limiting the Frequency of Authentication Server Access

If authentication servers are accessed too often they become a choke point, limit
network traffic, and raise the cost of maintaining data integrity to an impractical level.
The access rate to an authentication server is directly related to the frequency with which
routers respond positively to limited flooding enquiries. How often does that occur?
First, the issuance of a flooding enquiry by a router is usually a rare event, except at that

- 54 -

It A A Mt Ty S AT Y st B B BTT Y A B AA A RARLTAL LA ITIA T AR EA RS A RN AR A RA KARAA RARARAMAMA BN

router’s initialization. Second, assume that router x; issues a flooding enquiry, receives
as a response a source route terminating at router x,, and then enters x,’s location and
the source route to it into its routing table. This implies that x; need not again issue a
flooding enquiry for any member of the set of destinations for which x, makes progress.
This remains true as long as x; is not reinitialized and the source route between x; and xp
remains usable.

Although the issuance of a flooding enquiry by any one router is relatively rare, a
single enquiry may provoke many responses, thus requiring an equivalent number of
requests to an authentication server. The number of routers that respond to a flooding
enquiry is limited strictly by topology. However, the number of separate requests to an
authentication server made by any one router in response to a specific enquiry can be
held to one.

Assume that x; issues a limited flooding enquiry to which xp,-1 responds after
communicating with AS. Depending upon topology, xn-1 may receive more than one copy
of the enquiry, each copy arriving at x,-1 by a different route. Additionally, x,-1 may
have more than one neighbor x, that makes progress. If neighbor validation is used, then
for those subsequent enquiries xn-1 need not again communicate with AS, since it already
has done so once and the [source, destination] key and other data rettieved from AS by
xn-1 does not change until a different enquiry is issued by x;.

6.4 Routing 1able Modifications

Some extensions have been made to Cartesian routing in the interest of efficiency.
Two of those involve the addition or deletion of routing table entries as the result of
supposedly valid information received from other routers. The effects of an attack on
these practices must be discussed.

6.4.1 Implicit Routing Table Additions

In the description of Cartesian routing, any router x; along the source route taken
by a flooding reply may by implication enter the route {x; , ... , X} into its routing table.
When using neighbor validation, the entire source route {xi, X2, ... , Xn-1, X5 | d} is not
validated until x; checks its integrity, so such entries should not be made until then.
Upstream routers must set aside that route and wait until it is actually used by x; before
making these entries. If one assumes that there exists at most one attacker, then when a
router sees a source route that matches a flooding repiy it has recently seen, it may
assume that the source route has been validated and enter it into its database.

6.4.2 Implicit Routing Table Deletions

Assume that x; discovers its link to x;+1 in a source route {xi, X2, ... , Xn-1, Xn} NO
longer responds. It then transmits a source route outage packet using the reverse route
{x1, X1-1, ... » X2, x1}. This informs those routers that the source route is no longer

- 55 -

usable. If x; is malicious, it can simulate an outage merely by discarding selected
packets. There is little to gain from confirming the validity of an outage report.

Router x3 should now choose another source route that satisfies progress criteria
for th.ose destinations that would have used the now inoperative source route. This is
achieved either by initiating a limited flooding procedure or by consulting a table of
previous limited flooding responses. In both cases, those routes that avoid x; and x4
should be preferred.

6.5 Indirect Attacks on Data Traffic

The indirect attacks that can occur during limited flooding have been discussed at
length, and provisions for either preventing them or detecting them when necessary have

been developed. However, there remains a possibility of attack during data packet
transmission.

The following indirect attacks can occur within a data packet during transmission:
(1) Alteration of the source addiess.

(2) Alieration of the destination address.

(3) Alteration of the data.

(4) Alteration of the progress limit field.

(5) Alteration of the source route, if any is used.

Classes 1, 2, and 3 can break connections or prevent packet delivery. As discussed
earlier, unless this pattern of attack is consistent, it may be undetectable. However,
neither of these attacks seriously damage the network.

However, by altering a source route an attacker creates the potential for
widespread network damage. If a routing loop is created, those routers in the loop will
handle a smaller total of useful traffic and possibly become overloaded. If an attacker
creates stable routing loops and scatters them throughout a network, the network will be
severely damaged. That form of attack can be greatly restricted by means of a
time-to-live (TTL) counter similar to that in the IP packet header [RFC 791]. The TTL
counter is set by the source router in the header of each data packet to a value larger than
the maximum credible hop count (or elapsed time) from source to destination. It is
decremented by <ach router that forwards a packet. When the TTL field in a data packet
reaches zero, that packet is discarded.

If a TTL field is used, and assuming that at least one router in the loop is operating
properly, then a loop cannot be sustained indefinitely unless the TTL field is periodically
reset upward; otherwise the counter would eventually reach zero. Therefore, to sustain a
loop, at least one attacker must be in that loop to reset the TTL field. This is essentially

an indirect attack, characterized by the gencration of artificial traffic, and cannot be

prevented. If routers in a loop do become overloaded, congestion~control provides some
relief.

It is desirable to avoid using a TTL field if possible. Consider a source route
{x1, X2, ... , Xn-1, Xn}. For a loop to occur, at least two of the of x; in the source route
must be identical. Assume that each router applies the procedure in step (2) of Section
6.1.1 to each incoming packet that has a source route. Any loop in the source route that
exists when that procedure is applied to a packet will be detected and that packet will be
discarded; thus the TTL field is not necessary.

6.6 Congestion Control

One category of attack that cannot be prevented is the generation of artificial
network traffic. A router can fabricate and transmit packets, which could overload the
netwerk in its vicinity. An overloaded router is forced either to discard packets or to shed
load by rerouting some of its traffic. If an overloaded router can use a congestion-control
mechanism that causes an immediate neighbor to reroute a portion of its traffic, then the
damage caused by the generation of artificial traffic can be controlled to some extent.

Cartesian routing provides a congestion—control mechanism for individual routers.
A router that is becoming congested can initiate a congestion—control flooding request in an
attempt to reroute some traffic that uses it as an intermediary. Assume that routers r and
y are neighbors and that r chooses as the destination in its flooding request a location for
which y now forwards traffic to r. If r issues that flooding request only to y, then any
legal flooding replies will return via y. These replies will create alternate paths for a set
of destinations for which y currently forwards traffic via r. The flooding request implies
that r would reroute that traffic back via y, ¢« y recognizes that r is a cul-de-sac for that
set and reroutes that traffic via one of the routes supplied by the flooding responses
[Finn-87]. Furthermore, y is forbidden from forwarding any of the traffic of that settor
until it has been notified by r that the congestion has eased.

If r receives traffic from y for destinations within the forbidden set, then it may
infer that y is disobeying congestion—control procedures. Once such a failure is detected,
the discovering router can assume that the router which failed to obey the directive is
faulty. However, r may not receive any replies to its congestion-control flooding request.
Responding to congestion~control flooding requests is optional. Rather than responding
to a request, a congested router ignores it. This avoids the problem of a congested router
rerouting some of its traffic into another congested router. Hence, if no responses to r's
flooding request return via y, then r can only safely assume that the routes which make
progress via y are currently congested.

Indirect attacks made by abusing congestion-control flooding or illegally ignoring
flooding requests will not generally affect the network outside the immediate vicinity of
the attack. Discarding flooding requests without being congested only harms the network

-57 -~

to the extent that traffic is needlessly routed around it. This becomes serious only if that
router is on a critical path, or if the network in its regior: is already heavily congested.
The effects on the network are similar when a router needlessly issues congestion-control
flooding requests, which also reroute a portion of its traffic. Abuse of this facility could
prevent the network from usirg an attacking router as an intermediary.

A router is unable to know whether a neighbor obeys the congestion~control
flooding procedure. In the above example, y could attack r by generating artificial traffic
that congests r and then discard any congestion-control flooding packets sent by r. In this
situation r may issue other congestion-control flooding requests to immediate neighbors
other than y. If after that r still remains congested, it will be necessary for it to discard
packets to relieve the congestion, or to sever its connection to y. This form of indirect
attack will damage the network outside the immediate vicinity of y, since those packets
discarded would normally include traffic from remote sites. However, the attack’s effect
is limited to traffic that y creates or that is flowing through y’s immediate neighbors.

6.7 Host Mobility

Cartesian routing adapts easily to the addition of host mobility. A mobile host m
is assumed to be in two-way coramunication with at least one relay r;, as portrayed in
Figure 7a. Relays are routers that have the additional capability of communicating with
mobile hosts. Mobile hosts make and break associations with relays as they move. In
each acknowledgment (or reply) packet, a mobile host m includes the addresses of the set
{r:} with which it is currently associating. This allows the other end of a connection h to
redirect its traffic toward the appropriate relays as m moves. To what extent does
mobility affect attack resistance in a Cartesian network?

Any router could synthesize acknowledgment packets for a mobile host. It is
possible for a malicious router to masquerade as a member of {r;} and ther potentially to
redefine the set {r;} for a mobile host. The result is to redirect traffic for m to the wrong
relay. In Figure 7b, if r3 masquerades as a relay for m, traffic directed to m from h will
not reach r; and so will not reach m. If r3 can also successfully masquerade as m, then h
may not detect this.

However, a number of preconditions must be met for this to occur.

)
— o c.gm g m
h & ———— '.0 h o ——— & 3 -‘
R ./ ‘\.. . \o\ /‘.
n Toon
Figure 7a. Figure 7b.

(1) Either a connection to m must be already open, or someone must be
attempting to open a connection to it.

(2) The host h must receive acknowledgments from rs, implying that rj
knows h's address.

(3) acknowledgments contain sequence numbers, r3 must supply the
correct numbers. If not, then either its ucknowledgment wil! be
discarded by L, or the connection to m will be broken.

In general, for rjs to steal m's traffic with any reasonable chance of success, it must
somehow monitor either h’s or m's traffic. This can be further guarded against by
including in the neighbor validation sets Na; information declaring whether or not
neighboring routers are relays. This would allow ri’s neighbors to immediately detect its
masquerading as a relay.

For some host h to send any packet to a mobile host m, at least one of the set of
m’s current associations {r;} must be known to h. When a connection is opened, either
some trusted server is consulted or h must determine {r;} by enquiry. If a limited search
is performed in the region of the network (presumably, but not necessarily, near m) to
determine {r;}, then any relay within that region could lie about an association with m and
could as a result masquerade as m. Of course, end-to-end encryption techniques could
prevent this from being successful for an extended period.

It is difficult to correspond the type of damage caused by this indirect attack with
any previously discussed category of direct attack. Although the damage caused by this
indirect attack is not limited to the immediate vicinity of the point of attzck, the success of
the attack requires that the attacking relay await a specific opportunity that allows it to
make the attack. A malicious relay cannot use characteristics of the network operating
software to attack connections to mobile hosts whose traffic it cannot monitor. It seems
fair to conclude that the network as a whole remains attack resistant even if this form of
attack is not detectable.

68 Limiting Attack by Broadcast or Excessive Transmission

The cost to an internetwork of transmitting a broadcast packet is usually much
higher than that of transmitting a normal point-to-point packet. The limited flooding
mechanism within Cartesian routing uses broadcasting to accomplish its objective, and
that is therefore a potential weak point.

6.8.1 Limited Flooding

The limited flooding procedure uses high-priority broadcast distribution to find a
source route segment that makes progress toward a location. The number of routers
within f hops of the router initiating a limited flooding procedure is bound from above by
C(C-1)f-1. The cost to the network of each procedure activation is potentially high. If a
router were to continually issue flooding requests, this exponential cost could effectively

halt the network in that router’s vicinity. This is aggravated if no limit on f is enforced or
if that limit approaches the network’'s diameter. Under those conditions, excessive
broadcasting couid effectively halt the entire network.

A router does not require the use of limited flooding unless a neighboring link
becomes inoperative, or the router wishes to forward a packet with a destination for which
its routing table cannot make progress. Both are normally infrequent events. Only at
router initialization would one expect the need for more than one flooding request to be in
progress simultaneously. It is reasonable to restrict limited flooding requests issued by
any single router to no more than one outstanding request at any time. However,
self-enforcement procedures are insufficient to protect the network.

Instead, consider letting the immediate neighbors of the issuing router limit the
frequency of requests. Each router i can maintain a time-stamp that notes the last time it
received a flooding request from each of Ny;. Given a reasonable estimate for the typical
round-trip time of a flooding request ¢, any flooding request received from a neighbor,
that falls within ¢, of the last request issued by that neighbor, is discarded. If a router
needs to issue more than one request simultaneously, it can serialize them and separate
them by ar interval greater than i,.

That is an inadequate solution, because a malicious neighbor could fabricate
flooding requests from Nz; or yet farther distant. A method that avoids that pitfall is for
each router to filter all incoming flooding requests in the following manner. The filter
consists of an associative memory table and a first-in-first-out (FIFO) packet queue.
The length of both is determined by a reasonable limit on the number of simultaneous
flooding requests. When a flooding packet is received, the following actions take place:

1. The source address of the flooding packet is matched against the
associative table. If a match is found or the table is full, then the
packet is discarded.

2. The packet is stored into the FIFO queue to await processing.

A malicious router cannot overload its region of the network with flooding packets.
Any attempt to do so will result in the great majority of the flooding packets being
discarded by its neighbors, because either their filter table lengths are exceeded or source
address matches occur in their filters. Because the filter can be implemented in
hardware, it need not retard normal packet processing. This technique guards against
simultaneous attacks made by two or more non-isolated routers.

6.8.2 User-Initiated Broadcasting

A similar risk is presented to the network by user-issued broadcast packets (as
opposed to router-issued broadcast packets). Cartesian routing allows area-limited
broadcasting and enquiries. Given a location (¥, y) and a radius Ad, a packet can be
broadcast to all routers within the delimited circle. Similarly, a enquiry can be made

- 60 -

W

A
e e e m . e —— ————— . & R W A A R WM MR W R VR LR LT AR DTN LR u-“vlﬂ'wmwwwm\»j

from all routers within the delimited area. Preventing network damage from excessive
user broadcasts can be achieved by a filtration mechanism similar to the one just
mentioned.

The gateway through which a host enters the network should have a filter similar to
that just discussed. It should filter the broadcast packets initiated by its associated host
population. An additional filtration mechanism could be triggered by a router when it
receives a broadcast packet and is within the region delimited by Ad. It is within that
region where the cost of the broadcasting becomes most noticeable. The maximum
radius Ad must also be limited by the network administrator. For a network of
metropolitan or national scale, a user should be allowed to broadcast to only a limited
portion of the network at any one time. Developing a realistic limit on Ad will require
operating experience.

6.8.3 Excessive Generation of Traffic

The filtration technique that protects the network from excessive generation of
multicast packets should not be applied to attacks that are characterized by the excessive
generation of normal data packets. Under typical conditions, the number of different
packets and addresses simultaneously in transit through a router can make that filtration
impractical. If incoming traffic load becomes excessive in a Cartesian network,
congestion-control mechanisms provide some relief.

6.9 Modifying the Definition of Progress

The Cartesian routing procedure prevents the occurrence of routing loops by
requiring all source route segments to make progress toward the destination. A complete
path from source to destination is built up by concatentating these segments. In general,
there is a set of paths that meet the progress criteria between source and destination.
This distinguishes Cartesian routing from other routing procedures, such as those based
upon shortes(-path routing, in which only one path is shortest at a given time. Since a set
of paths is available under the Cartesian procedure, if more than a single path makes
progress toward a destination, traffic for that destination can be transmitted over each
path. Other conditions can be added to the definition of progress to further refine path
selection for differing traffic categories. This allows a certain amount of specialized path
selection based upon the type of service desired. In these cases, packets must be marked
with their category so that the correct subset of paths is selected. What affect will this
have upon a network’s attack resistance?

Assume that the internetwork handles both normal and highly sensitive traffic, and
that a sizeable portion of the network routers maintain links with differing levels of
security. An example of this would be links with enciphered (as opposed to
unenciphered) communications channels. The concept of packet progress for sensitive
traffic could be redefined to be a source route segment that not only got closer to the
destination, but that also used only secure channels. For sensitive traffic the flooding

- 61 -

e 4 y 7 WAL W DA R P NG RS B NPGT UV W M T R T e N B A wlU Rt P N N Ak MR Y R £ Nl £ 7R L Mm“@

algorithm would restrict its searching to secure links. The returned source routes would
then be composed entirely of secure links. The routing algorithm would facilitate what
has been called red-black separation.

The paths to the destination taken by sensitive traffic must not use any
non-secured links; so in general, sensitive and non-sensitive traffic must take different
paths to the same destination. This is true even if the source of both classes of traffic is a
single host. If both paths exist within the flooding search limit, the modification to the
definition of progress allows the Cartesian procedure to develop and simultaneously use
both paths. Further, if more than a single secure path makes progress, then sensitive
traffic for the corresponding destination may be randomly apportioned between the paths.
This would make traffic analysis considerably more difficult. It would be desirable to
abort any sensitive connection if at any time no fully secured path existed between source
and destination.

The source route segment developed by limited flooding can be validated as one
that contains only secured links. To achieve this, the information distributed concerning
links in the sets N3; must contain the necessary additional data to validate the route. If
only secured links are to be used, then during a flooding response each router must
validate not only that the link and routers at either end exist, but also that the links are
secure. By repeated application the entire route from source to destination is determined
to be secure, or the connection is aborted. An individual router may attack the network
by transmitting secure data over a non-secure path. This may be impossible to detect.

Assume that the sets N2; contain maximum link capacity in addition to address
and topology data. Consider a modification to limited flooding that requests a least upper
bound of static link capacity. The definition of progress could be augmented to include a
restriction that no source route segment may have less than a stated amount of maximum
capacity. A variant of the neighbor validation procedure can ensure that the entire source
route has at least the requested static capacity.

This modification provides a weak form of flow control. Paths with limited
capacity could be selected for low bandwidth, transaction-oriented traffic, such as
TELNET. Conversely, if high throughput is desired, this would allow preference to be
given to paths composed of satellite links rather than terrestrial links. However, if no
high-bandwidth paths were available, a router could select lower bandwidth paths as a
less desirable alternative. Numerous variations are possible.

Notice that the validation techniques discussed in this paper allow efficient
validation only of static information, such as addresses, installed topology, and link
configuration data. Dynamic data, such as the currently available link capacity, cannot be
efficiently validated. The flooding procedure can easily be augmented to search for
routes with a minimum available capacity, but that cannot easily be validated. However,
neighbor validation will detect any single attack in which a link is claimed to have greater
than its maximum capacity.

- 62 -

— AR e L S A e S B SRR N SN AAAN AL R A AR AN R

- ez

TR Ry TR ey e T e e

6.9.1 Router Avoldance

Consider the situation in which it is desirable to avoid using a particular router r
except when necessary, perhaps because it is known to be less reliable. Assume that one
of r's neighboring routers n;, an element of Nir, has discovered this. Its definition of
progress can now be augmented to avoid any path that uses a link to r. Router n;
examines its routing table for any source route segments {xi, ... , m;, r, ...} and then
transmits source route outage packets for them. This ensures that r will no longer be
used as un intermediary by n;. Traffic to r through n; will be restricted to traffic that is
destined for r. This mechanism could be used to provide a weak form of flow control,
which offloads the link between n; and r.

69.2 Forced Reconfiguration

The technique of router avoidance can be extended in conjunction with
authentication servers to provide an attack-resistant method that forcibly deconfigures a
particular router r from the network. If r is known to be malicious or very unreliable, it is
desirable that it be deconfigured from the network until control over it is regained or until
it is repaired. If r is malicious, administrators cannot assume that it would obey any
‘shutdown’ messages that it might receive from network administration; nor can they
assume that it would reliably communicate such messages to its neighbors.

To remotely deconfigure r from the network it is necessary to inform r's immediate
neighbors to cease communication with r. This requires a reliable communication route
to r's neighbors from a network administrative authority. The straightforward solution is
to use the regional authentication servers. The route can then be constructed in the
following manner.

Assume that a regional authenticaticn server AS wishes to reliably communicate
with a router r's immediate neighbors Nir. AS issues a set of unique limited flooding
requests, each specifying one of Nir as the destination with zero in the progress limit
field. Each request returns a set of source routes from AS to an element of Nir.
However, router r must be avoided by all such paths because it is assumed unreliable. By
removing from those sets any source route that contains r, a reliable path to each element
of Njr is constructed. The set selection criteria can be made more severe, such as
forbidding any path to contain a router from a set {r;}. However, doing so increases the
probability that no acceptable paths remain.

Implicit in this method is the assumption that the network is sufficiently well
connected that each of AS's flooding requests returns a non-empty set of source routes.
Since forcible deconfiguration should occur very infrequently, the value of f can be set
sufficiently high to ensure non-empty return sets in all but the most poorly connected of
network topologies. However, it is still possible that the removal of routes containing r
would result in an empty set. For example, r could be on a cut path that partitions the
network.

Section 1.3.3 discusses single attacks that involve the discarding of messages. If a
router consistently discards traffic for a particular connection, the only evidence for the
attack may be a severed connection. If it is known that both source and destination are
properly operating and that no network error message of the form “connection dropped
due to no route” has been received, one possible cause might be an attacking router that

is discarding messages. The attack would have been made somewhere aiong the route
chosen by the network.

Under these circumstances, one could postulate a trial-and-error network
reconfiguration program designed to detect and eliminate the malicious router or link. An
administrative center could perform the following actions:

(1) Selectively deconfigure from the network a router and its links,
choosing the router from along the presumed connection path.

(2) Inject at the source router traffic with the same profile as that which
originally provoked the attack.

(3) Determine whether or not traffic is flowing over the connection. If it
is flowing, then presumably the malicious router has been removed
from the network. If it is not flowing, then reconfigure that router
and return to step (1), choosing a new router.

Steps 1 through 3 would be repeated until the offender has been found or until the routers
along the presumed path have all been chosen and tested.

6.10 Random Use of Multiple Paths to Destinations

It will always be possible for any link or router to discard traffic, to alter the traffic
that passes through it, or to fabricate traffic. Given the vulnerability of links and routers,
this cannot be prevented, and the effects of an attack on a connection are felt outside the
immediate vicinity of the attack. This form of indirect attack is in a sense an irreducible
minimum. A routing protocol that already resists other forms of indirect attack and that
could also resist this form of attack would truly meet the definition of attack resistance.

Assume that an attack occurs in a link or router along the path between source and
destination. Ideally, if the attack became known to the attacker's neighboring routers,
then traffic could be routed around the attacker. However, it was pointed out earlier that
such attacks may be undetectable or impractical to detect. If such is the case, the
continuity of a connection may only be ensured by a policy that uses retransmission in
conjunction with multiple paths over which traffic for the connection flows. To guarantee
this, each path must share no routers or links in common. In mos* cases that would be
impractical, since connection endpoints often only access the netwoi.. via a single router
or gateway, and for datagram procedures a router may not possess knowledge beyond the
next hop on a packet's path.

- 64 -

|
¥
:
|

1,
IR TR IO WL A B NI 0 MR I TOM P MO I WP WAL WAL mmm.mmimmwmmg

Random Router Selaction Between Multiple Routes

Consider a statistical approach that closely approximates the ideal solution.
Section 4.10 of this report mentions that routing procedures, such as Cartesian routing,
which can simultaneously develop and use more than one path between source and
destination, possess a distinct attack-resistant advantage. Since limited flooding returns a
set of source route segments that make progress toward a set of destinations, a Cartesian
routing procedure in many cases may simultaneously maintain in its routing tables
optional routes that it can uss to make progress toward a destination. This approach
could also be used in conjunction with virtual circuit routing.

To successfully forward packets toward any destination, a router need only

‘maintain a single source route segment in its routing table that allows it to make progress.

Assume that each router retains in its tables all the acceptable flooding replies that it
receives to its flooding requests. Assume also that if a router has an immediate neighbor
that makes progress for a class of destinations, then that router issues a limited flooding
request to obtain addition routes that make progress. Finally, assume that
connection-levei protocols implement end-to--end retransmission and are able to detect
duplicate packets.

The routing path selection polic; is now modified. Rather than selecting from the
routing table the single source route segment that is thought to be the most efficient, each
router when possible randomly chooses a route segment from the set of segments that
make progress. This policy would cause the network to route connection traffic over a
varicty of paths for most connections. However, this policy would tend to decrease
network efficiency, and under congested conditions it may be difficult for a router to
maintain the necessary sets of routes.

If this policy is followed, an attacke: may intercept some traffic for a connection,
but it is unlikely to see more than a fraction of it unless the attack occurs on a critical
path for the connection. It then becomes much less likely that an attacker can break a
connection or prevent one from occurring. End-to-end retransmission would ensure that
both acknowledgments and duplicates, when transmiiied, would take a variety of paths.
Without knowledge of correct sequence numbers, it becomes difficult for an attacker to
cause a connection to reset or to fabricate traffic acceptable to the source or destination.
Although an attacker could prevent a connecticn from opening if it merely discarded the
initialization packets, repeated attempts to open he connection from the source would be
likely to succeed because copies of the initialization packets would probably take different
routes.

Further refinements are possible. Consider a routing table and a set of routes that
make progress toward a destination. Although each alternate path within the set starts
from the router making the choice, it is desirable that elements uf the set share as few
common members as possible. Ideally, one desires a set of at least two paths that share
no members except for the starting router. The possibility of sets of paths meeting that
criterion when passing through a network region of low connectivity is unlikely.

Finally, there is the question of packet duplication. When should this policy be
used? When used, should ¢nd -to-end retransmission be relied upon to ensure delivery of
undamaged packets and to maintain a connection, or should duplicates also be generated
by the source router so that at least twc copies of each packet are transmitted? The
answers probably depend upon the relative importance of a connection. The possibility of
duplicate transmission by each router that makes a routing choice (not intermediary
routers in a source route segment) would probably generate too much overhead.
Although it may not be possible to achieve a quantitative answer, the question of how
much more reliably connections are maintained by this policy in the presence of attack is
an interesting one.

6.11 Pros and Cons

Mechanisms have been developed for Cariesian routing that ensure the validity of
source routes discovered via limited flooding. If these mechanisms are employed, no
single router or filter on a link can supply invalid routing information that goes
undetected. In addition, it was shown that adding link encryption and implementing
filtration mechanisms for broadcast packets can greatly restrict the damage that results
from most other classes of indirect attack. Finally, Cartesian routing can be modified to
closely approach the ideal of attack resistance through the use of a statistical policy of
route selection.

These mechanisms are practical, but there are costs. Auvrhentication servers must
be added to the network, aeighbor-validity sets must be maintained, and normally an
additional two-packet authentication exchange must occur prior to the transmission of a
flooding response, thus lengthening the response time to a flooding enquiry. The cost of
authentication is not too high as long as the occurrence of limited flooding remains
infrequent. The lik encryption and filtration mechanisms can be easily implemented in
hardware so that any performance degradation resulting from their use is small. The
statistical route selection policy does complicate router software and decrease overall
network efficiency. Its effectiveness also decreases as a network becomes congested.

5
:

T T T T T T T T e e e e e s e A S R G U A s S R WL N S T S, S

7 Conclusion

Practically speaking, there is no way to completely protect a system against
hardware failure or human inte